summaryrefslogtreecommitdiff
path: root/cesar/ecos/packages/kernel/current/src/common/clock.cxx
blob: 917b588a397b10f8411422084548c57e4d1da6f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
//==========================================================================
//
//      common/clock.cxx
//
//      Clock class implementations
//
//==========================================================================
//####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002 Red Hat, Inc.
// Copyright (C) 2002 Jonathan Larmour
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with eCos; if not, write to the Free Software Foundation, Inc.,
// 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
//
// As a special exception, if other files instantiate templates or use macros
// or inline functions from this file, or you compile this file and link it
// with other works to produce a work based on this file, this file does not
// by itself cause the resulting work to be covered by the GNU General Public
// License. However the source code for this file must still be made available
// in accordance with section (3) of the GNU General Public License.
//
// This exception does not invalidate any other reasons why a work based on
// this file might be covered by the GNU General Public License.
//
// Alternative licenses for eCos may be arranged by contacting Red Hat, Inc.
// at http://sources.redhat.com/ecos/ecos-license/
// -------------------------------------------
//####ECOSGPLCOPYRIGHTEND####
//==========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):   nickg
// Contributors:        nickg
// Date:        1997-09-15
// Purpose:     Clock class implementation
// Description: This file contains the definitions of the counter,
//              clock and alarm class member functions that are common
//              to all clock implementations.
//
//####DESCRIPTIONEND####
//
//==========================================================================

#include <pkgconf/kernel.h>

#include <cyg/kernel/ktypes.h>         // base kernel types
#include <cyg/infra/cyg_trac.h>        // tracing macros
#include <cyg/infra/cyg_ass.h>         // assertion macros

#include <cyg/kernel/clock.hxx>        // our header

#include <cyg/kernel/sched.hxx>        // scheduler definitions
#include <cyg/kernel/thread.hxx>       // thread definitions
#include <cyg/kernel/intr.hxx>         // interrupt definitions

#include <cyg/kernel/sched.inl>        // scheduler inlines
#include <cyg/kernel/clock.inl>        // Clock inlines

// -------------------------------------------------------------------------
// Static variables

#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK

Cyg_Clock *Cyg_Clock::real_time_clock = NULL;   // System real time clock

#endif

//==========================================================================
// Constructor for counter object

Cyg_Counter::Cyg_Counter(
    cyg_uint32      incr
    )
{
    CYG_REPORT_FUNCTION();

    counter = 0;
    increment = incr;

}

// -------------------------------------------------------------------------
// Destructor for Counter object

Cyg_Counter::~Cyg_Counter()
{
    CYG_REPORT_FUNCTION();


}

// -------------------------------------------------------------------------
// 

#ifdef CYGDBG_USE_ASSERTS

cyg_bool Cyg_Counter::check_this( cyg_assert_class_zeal zeal) const
{
    // check that we have a non-NULL pointer first
    if( this == NULL ) return false;
    
    switch( zeal )
    {
    case cyg_system_test:
    case cyg_extreme:
    case cyg_thorough:
    case cyg_quick:
    case cyg_trivial:
    case cyg_none:
    default:
        break;
    };

    return true;
}

#endif

// -------------------------------------------------------------------------
// Counter tick function

void Cyg_Counter::tick( cyg_uint32 ticks )
{
//    CYG_REPORT_FUNCTION();

    CYG_ASSERTCLASS( this, "Bad counter object" );

    // Increment the counter in a loop so we process
    // each tick separately. This is easier than trying
    // to cope with a range of increments.
    
    while( ticks-- )
    {
        Cyg_Scheduler::lock();

        // increment the counter, note that it is
        // allowed to wrap.
        counter += increment;

        // now check for any expired alarms

        Cyg_Alarm_List *alarm_list_ptr;     // pointer to list

#if defined(CYGIMP_KERNEL_COUNTERS_SINGLE_LIST)

        alarm_list_ptr = &alarm_list;

#elif defined(CYGIMP_KERNEL_COUNTERS_MULTI_LIST)

        // With multiple lists, each one contains only the alarms
        // that will expire at a given tick modulo the list number.
        // So we only have a fraction of the alarms to check here.
        
        alarm_list_ptr = &(alarm_list[
                               (counter/increment) % CYGNUM_KERNEL_COUNTERS_MULTI_LIST_SIZE ] );
    
#else
#error "No CYGIMP_KERNEL_COUNTERS_x_LIST config"
#endif

        // Now that we have the list pointer, we can use common code for
        // both list organizations.

#ifdef CYGIMP_KERNEL_COUNTERS_SORT_LIST

        // With a sorted alarm list, we can simply pick alarms off the
        // front of the list until we find one that is in the future.

        while( !alarm_list_ptr->empty() )
        {
            Cyg_Alarm *alarm = alarm_list_ptr->get_head();
        
            CYG_ASSERTCLASS(alarm, "Bad alarm in counter list" );
            
            if( alarm->trigger <= counter )
            {
                // remove alarm from list
                alarm_list_ptr->rem_head();

                if( alarm->interval != 0 )
                {
                    // The alarm has a retrigger interval.
                    // Reset the trigger time and requeue
                    // the alarm.
                    alarm->trigger += alarm->interval;
                    add_alarm( alarm );
                }
                else alarm->enabled = false;

                CYG_INSTRUMENT_ALARM( CALL, this, alarm );
                
                // call alarm function
                alarm->alarm(alarm, alarm->data);

                // all done, loop
            }
            else break;
            
        } 
#else

        // With unsorted lists we must scan the whole list for
        // candidates. However, we must be careful here since it is
        // possible for the function of one alarm to add or remove
        // other alarms to/from this list. Having the list shift under
        // our feet in this way could be disasterous. We solve this by
        // restarting the scan from the beginning whenever we call an
        // alarm function.

        cyg_bool rescan = true;

        while( rescan )
        {
            Cyg_DNode_T<Cyg_Alarm> *node = alarm_list_ptr->get_head();

            rescan = false;
            
            while( node != NULL )
            {
                Cyg_Alarm *alarm = CYG_CLASSFROMBASE( Cyg_Alarm, Cyg_DNode, node );
                Cyg_DNode_T<Cyg_Alarm> *next = alarm->get_next();

                CYG_ASSERTCLASS(alarm, "Bad alarm in counter list" );

                if( alarm->trigger <= counter )
                {
                    alarm_list_ptr->remove(alarm);

                    if( alarm->interval != 0 )
                    {
                        // The alarm has a retrigger interval.
                        // Reset the trigger time and requeue
                        // the alarm.
                        alarm->trigger += alarm->interval;
                        add_alarm( alarm );
                    }
                    else alarm->enabled = false;

                    CYG_INSTRUMENT_ALARM( CALL, this, alarm );
                
                    // Call alarm function
                    alarm->alarm(alarm, alarm->data);

                    rescan = true;

                    break;
                }

                // If the next node is the head of the list, then we have
                // looped all the way around. The node == next test
                // catches the case where we only had one element to start
                // with.
                if( next == alarm_list_ptr->get_head() || node == next )
                    node = NULL;
                else
                    node = next;
            }

        }
        
#endif        
        Cyg_Scheduler::unlock();

    }
    
}

// -------------------------------------------------------------------------
// Add an alarm to this counter

void Cyg_Counter::add_alarm( Cyg_Alarm *alarm )
{
    CYG_REPORT_FUNCTION();

    CYG_ASSERTCLASS( this, "Bad counter object" );
    CYG_ASSERTCLASS( alarm, "Bad alarm passed" );
    CYG_ASSERT( Cyg_Scheduler::get_sched_lock() > 0, "Scheduler not locked");
    
    // set this now to allow an immediate handler call to manipulate
    // this alarm sensibly.
    alarm->enabled = true;

    // Check here for an alarm that triggers now or in the past and
    // call its alarm function immediately. 
    if( alarm->trigger <= counter )
    {
        CYG_INSTRUMENT_ALARM( CALL, this, alarm );

        // call alarm function. Note that this is being
        // called here before the add_alarm has returned.
        // Note that this function may disable the alarm.
        
        alarm->alarm(alarm, alarm->data);

        // Note that this extra check on alarm->enabled is in case the
        // handler function disables this alarm!
        if( alarm->interval != 0 && alarm->enabled )
        {
            // The alarm has a retrigger interval.
            // Reset the trigger interval and drop
            // through to queue it.
            alarm->trigger += alarm->interval;
            // ensure the next alarm time is in our future, and in phase
            // with the original time requested.
            alarm->synchronize();
        }
        else
        {
            // The alarm is all done with, disable it
            // unlock and return.
            alarm->enabled = false;
            return;
        }
    }
    
    CYG_INSTRUMENT_ALARM( ADD, this, alarm );
 
    // Find the pointer to the relevant list _after_ a retrigger
    // alarm has been given its new trigger time.

    Cyg_Alarm_List *alarm_list_ptr;     // pointer to list

#if defined(CYGIMP_KERNEL_COUNTERS_SINGLE_LIST)

    alarm_list_ptr = &alarm_list;

#elif defined(CYGIMP_KERNEL_COUNTERS_MULTI_LIST)

    // Each alarm must go into the list that covers the tick that is
    // going to happen _after_ the trigger time (or at it if trigger
    // happens to fall on a tick.
    
    alarm_list_ptr = &(alarm_list[
        ((alarm->trigger+increment-1)/increment) %
        CYGNUM_KERNEL_COUNTERS_MULTI_LIST_SIZE ] );
    
#else
#error "No CYGIMP_KERNEL_COUNTERS_x_LIST config"
#endif

#ifdef CYGIMP_KERNEL_COUNTERS_SORT_LIST
        
    // Now that we have the list pointer, we can use common code for
    // both list organizations.

    Cyg_Alarm *list_alarm = alarm_list_ptr->get_head();

    if( list_alarm != NULL )
    {
        do
        {
            CYG_ASSERTCLASS(list_alarm, "Bad alarm in counter list" );

            // The alarms are in ascending trigger order. If we
            // find an alarm that triggers later than us, we go
            // in front of it.
        
            if( list_alarm->trigger > alarm->trigger )
            {
                alarm_list_ptr->insert( list_alarm, alarm );
                return;
            }

            list_alarm = list_alarm->get_next();
            
        } while( list_alarm != alarm_list_ptr->get_head() );
        // a lower or equal alarm time was not found, so drop through
        // so it is added to the list tail
    }
#endif

    alarm_list_ptr->add_tail( alarm );
}

// -------------------------------------------------------------------------
// Remove an alarm from this counter

void Cyg_Counter::rem_alarm( Cyg_Alarm *alarm )
{
    CYG_REPORT_FUNCTION();

    CYG_ASSERTCLASS( this, "Bad counter object" );
    CYG_ASSERTCLASS( alarm, "Bad alarm passed" );
    CYG_ASSERT( Cyg_Scheduler::get_sched_lock() > 0, "Scheduler not locked");
    
    Cyg_Alarm_List *alarm_list_ptr;     // pointer to list

#if defined(CYGIMP_KERNEL_COUNTERS_SINGLE_LIST)

    alarm_list_ptr = &alarm_list;

#elif defined(CYGIMP_KERNEL_COUNTERS_MULTI_LIST)

    alarm_list_ptr = &(alarm_list[
        ((alarm->trigger+increment-1)/increment) %
                              CYGNUM_KERNEL_COUNTERS_MULTI_LIST_SIZE ] );
    
#else
#error "No CYGIMP_KERNEL_COUNTERS_x_LIST config"
#endif

    // Now that we have the list pointer, we can use common code for
    // both list organizations.

    CYG_INSTRUMENT_ALARM( REM, this, alarm );

    alarm_list_ptr->remove( alarm );
    
    alarm->enabled = false;

}

//==========================================================================
// Constructor for clock object

Cyg_Clock::Cyg_Clock(
    cyg_resolution      res
    )
{
    CYG_REPORT_FUNCTION();

    resolution = res;
}

// -------------------------------------------------------------------------
// Destructor for Clock objects

Cyg_Clock::~Cyg_Clock()
{
    CYG_REPORT_FUNCTION();

}

// -------------------------------------------------------------------------
// 

#ifdef CYGDBG_USE_ASSERTS

cyg_bool Cyg_Clock::check_this( cyg_assert_class_zeal zeal) const
{
    // check that we have a non-NULL pointer first
    if( this == NULL ) return false;
    
    switch( zeal )
    {
    case cyg_system_test:
    case cyg_extreme:
    case cyg_thorough:
    case cyg_quick:
    case cyg_trivial:
    case cyg_none:
    default:
        break;
    };

    return true;
}

#endif

// -------------------------------------------------------------------------
// 
// Clock Converters: split a rational into 4 factors to try to prevent
// overflow whilst retaining reasonable accuracy.
// 
// typically we get numbers like 1,000,000 for ns_per and
// 100 and 1,000,000,000 for the dividend and divisor.
// So we want answers like 1/10 and 10/1 out of these routines.

static void construct_converter( Cyg_Clock::converter *pcc,
                                        cyg_uint64 m1, cyg_uint64 d1,
                                        cyg_uint64 m2, cyg_uint64 d2 )
{
    cyg_uint64 upper, lower;
    unsigned int i;
    static cyg_uint16 primes[] = {
        3,5,7,11,13,17,19,23,29,31,37,41,43,47,
        53,59,61,67,71,73,79,83,89,97,
        101,103,107,109,113,127,131,137,139,149,
        151,157,163,167,173,179,181,191,193,197,199,
        239,                            // for 1,111,111
        541,                            // for 10,101,011
        1667,                           // for 8,333,333
    };

    int rounding = 0;

    // Here we assume that our workings will fit in a 64; the point is to
    // allow calculations with a number of ticks that may be large.
    upper = m1 * m2;
    lower = d1 * d2;
#ifdef CYGDBG_USE_ASSERTS
    cyg_uint64 save_upper = upper;
    cyg_uint64 save_lower = lower;
#endif

 retry_rounding:
    // First strip out common powers of 2
    while ( (0 == (1 & upper)) && ( 0 == (1 & lower)) ) {
        upper >>= 1;
        lower >>= 1;
    }

    // then common factors - use lazy table above
    for ( i = 0 ; i < (sizeof( primes )/sizeof( primes[0] )); i++ ) {
        cyg_uint64 j, k, p = (cyg_uint64)(primes[i]);
        j = upper / p;
        while ( j * p == upper ) {
            k = lower / p;
            if ( k * p != lower )
                break;
            upper = j;
            lower = k;
            j = upper / p;
        }
    }

    m1 = upper;
    d1 = lower;
    m2 = 1;
    d2 = 1;

    if ( m1 > 0x10000 ) {
        // only bother if there are more than 16 bits consumed here

        // now move powers of 2 from d1 to d2
        // keeping them the same order of magnitude
        while ( (0 == (1 & d1)) && (d2 < d1) ) {
            d1 >>= 1;
            d2 <<= 1;
        }

        // and factors from the table - go too far, if anything
        int cont = (d2 < d1);
        for ( i = 0 ; cont && (i < (sizeof( primes )/sizeof( primes[0] ))); i++ ) {
            cyg_uint64 k, p = (cyg_uint64)(primes[i]);
            k = d1 / p;
            while ( cont && ((k * p) == d1) ) {
                // we can extract a prime
                d1 = k;
                d2 *= p;
                k = d1 / p;
                cont = (d2 < d1);
            }
        }
        
        // move powers of 2 from m1 to m2 so long as we do not go less than d1
        while ( (0 == (1 & m1)) && (m2 < m1) && (m1 > (d1 << 5)) ) {
            m1 >>= 1;
            m2 <<= 1;
            if ( m1 < 0x10000 )
                break;
        }
        
        // and factors from the table - ensure m1 stays well larger than d1
        cont = ((m2 < m1) && (m1 > (d1 << 4)) && (m1 > 0x10000));
        for ( i = 0 ; cont && (i < (sizeof( primes )/sizeof( primes[0] ))); i++ ) {
            cyg_uint64 k, p = (cyg_uint64)(primes[i]);
            k = m1 / p;
            cont = cont && (k > (d1 << 4) && (k > 0x10000));
            while ( cont && ((k * p) == m1) ) {
                // we can extract a prime
                m1 = k;
                m2 *= p;
                k = m1 / p; // examine k for getting too small
                cont = ((m2 < m1) && (k > (d1 << 4)) && (k > 0x10000));
            }
        }

        // if, after all that, m1 odd and unchanged, and too large,
        // decrement it just the once and try again: then try it
        // incremented once.
        if ( (m1 & 1) && (m1 == upper) && (m1 > 0x10000) && (rounding < 2) ) {
            CYG_ASSERT( 1 == m2, "m2 should be 1 to try rounding" );
            m1--;
            upper = m1;
            rounding++;
            goto retry_rounding;
        }
        // likewise for d1 - each of the pair can be odd only once each
        if ( (d1 & 1) && (d1 == lower) && (d1 > 0x10000) && (rounding < 2) ) {
            CYG_ASSERT( 1 == d2, "d2 should be 1 to try rounding" );
            d1--;
            lower = d1;
            rounding++;
            goto retry_rounding;
        }
    }

    CYG_ASSERT( 0 != m1, "m1 zero" );
    CYG_ASSERT( 0 != m2, "m2 zero" );
    CYG_ASSERT( 0 != d1, "d1 zero" );
    CYG_ASSERT( 0 != d2, "d2 zero" );
    CYG_ASSERT( rounding || save_upper/save_lower == (m1 * m2)/(d1 * d2),
                "Unequal in forwards direction" );
    CYG_ASSERT( rounding || save_lower/save_upper == (d1 * d2)/(m1 * m2),
                "Unequal in reverse direction" );

    pcc->mul1 = m1;
    pcc->div1 = d1;
    pcc->mul2 = m2;
    pcc->div2 = d2;
}

// other to clocks is (other * ns_per * dividend / divisor)
void Cyg_Clock::get_other_to_clock_converter(
    cyg_uint64 ns_per_other_tick,
    struct converter *pcc )
{
    construct_converter( pcc,
                         ns_per_other_tick, 1,
                         resolution.divisor, resolution.dividend );
}

// clocks to other is (ticks * divisor / dividend / ns_per)
void Cyg_Clock::get_clock_to_other_converter(
    cyg_uint64 ns_per_other_tick,
    struct converter *pcc )
{
    construct_converter( pcc,
                         1, ns_per_other_tick,
                         resolution.dividend, resolution.divisor );
}


//==========================================================================
// Constructor for alarm object

Cyg_Alarm::Cyg_Alarm(
        Cyg_Counter     *c,             // Attached to this counter
        cyg_alarm_fn    *a,             // Call-back function
        CYG_ADDRWORD    d               // Call-back data
        )
{
    CYG_REPORT_FUNCTION();

    counter     = c;
    alarm       = a;
    data        = d;
    trigger     = 0;
    interval    = 0;
    enabled     = false;

}

Cyg_Alarm::Cyg_Alarm(){}

// -------------------------------------------------------------------------
// Destructor

Cyg_Alarm::~Cyg_Alarm()
{
    CYG_REPORT_FUNCTION();

    disable();
}

// -------------------------------------------------------------------------
// 

#ifdef CYGDBG_USE_ASSERTS

cyg_bool Cyg_Alarm::check_this( cyg_assert_class_zeal zeal) const
{
    // check that we have a non-NULL pointer first
    if( this == NULL ) return false;
    
    switch( zeal )
    {
    case cyg_system_test:
    case cyg_extreme:
    case cyg_thorough:
        if( trigger != 0 && !enabled ) return false;
    case cyg_quick:
    case cyg_trivial:
    case cyg_none:
    default:
        break;
    };

    return true;
}

#endif

// -------------------------------------------------------------------------
// Initialize Alarm and enable

void Cyg_Alarm::initialize(                
    cyg_tick_count    t,                // Absolute trigger time
    cyg_tick_count    i                 // Relative retrigger interval
    )
{
    CYG_REPORT_FUNCTION();

    Cyg_Scheduler::lock();
    
    // If already enabled, remove from counter
    
    if( enabled ) counter->rem_alarm(this);

    CYG_INSTRUMENT_ALARM( INIT,     this, 0 );
    CYG_INSTRUMENT_ALARM( TRIGGER,
                          ((cyg_uint32 *)&t)[0],
                          ((cyg_uint32 *)&t)[1] );
    CYG_INSTRUMENT_ALARM( INTERVAL,
                          ((cyg_uint32 *)&i)[0],
                          ((cyg_uint32 *)&i)[1] );
 
    trigger = t;
    interval = i;

    counter->add_alarm(this);

    Cyg_Scheduler::unlock();    
}

// -------------------------------------------------------------------------
// Synchronize with a past alarm stream that had been disabled,
// bring past times into synch, and the like.

void
Cyg_Alarm::synchronize( void )
{
    if( interval != 0 ) {
        // This expression sets the trigger to the next whole interval
        // at or after the current time. This means that alarms will
        // continue at the same intervals as if they had never been
        // disabled. The alternative would be to just set trigger to
        // (counter->counter + interval), but this is less satisfying
        // than preserving the original intervals. That behaviour can
        // always be obtained by using initialize() rather than
        // enable(), while the current behaviour would be more
        // difficult to achieve that way.
        cyg_tick_count d;
        d = counter->current_value() + interval - trigger;
        if ( d > interval ) {
            // then trigger was in the past, so resynchronize
            trigger += interval * ((d - 1) / interval );
        }
        // otherwise, we were just set up, so no worries.
    }
}

// -------------------------------------------------------------------------
// Ensure alarm enabled

void Cyg_Alarm::enable()
{
    Cyg_Scheduler::lock();
    
    if( !enabled )
    {
        // ensure the alarm time is in our future:
        synchronize();
        enabled = true;
        counter->add_alarm(this);
    }

    Cyg_Scheduler::unlock();    
}

// -------------------------------------------------------------------------
// Ensure alarm disabled

void Cyg_Alarm::disable()
{
    Cyg_Scheduler::lock();

    if( enabled ) counter->rem_alarm(this);

    Cyg_Scheduler::unlock();
}

// -------------------------------------------------------------------------
// Get the current time values from the alarm

void Cyg_Alarm::get_times(
        cyg_tick_count  *t,      // Next trigger time
        cyg_tick_count  *i       // Current interval
        )
{
    // Lock the scheduler while we do this to avoid
    // race conditions.
    Cyg_Scheduler::lock();

    if( t != NULL ) *t = trigger;
    if( i != NULL ) *i = interval;
    
    Cyg_Scheduler::unlock();
}

//==========================================================================
// System clock object

#ifdef CYGVAR_KERNEL_COUNTERS_CLOCK

class Cyg_RealTimeClock
    : public Cyg_Clock
{
    Cyg_Interrupt       interrupt;

    static cyg_uint32 isr(cyg_vector vector, CYG_ADDRWORD data);

    static void dsr(cyg_vector vector, cyg_ucount32 count, CYG_ADDRWORD data);

    Cyg_RealTimeClock();

    static Cyg_RealTimeClock rtc;
};

Cyg_Clock::cyg_resolution rtc_resolution = CYGNUM_KERNEL_COUNTERS_RTC_RESOLUTION;

//Cyg_RealTimeClock Cyg_RealTimeClock::rtc __attribute__((init_priority (1)));

Cyg_RealTimeClock Cyg_RealTimeClock::rtc CYG_INIT_PRIORITY( CLOCK );

// -------------------------------------------------------------------------

Cyg_RealTimeClock::Cyg_RealTimeClock()
    : Cyg_Clock(rtc_resolution),
      interrupt(CYGNUM_HAL_INTERRUPT_RTC,
                CYGNUM_KERNEL_COUNTERS_CLOCK_ISR_PRIORITY,
                (CYG_ADDRWORD)this, isr, dsr)
{
    CYG_REPORT_FUNCTION();

    HAL_CLOCK_INITIALIZE( CYGNUM_KERNEL_COUNTERS_RTC_PERIOD );
    
    interrupt.attach();

    interrupt.unmask_interrupt(CYGNUM_HAL_INTERRUPT_RTC);

    Cyg_Clock::real_time_clock = this;
}

#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY) && defined(HAL_CLOCK_LATENCY)
cyg_tick_count total_clock_latency, total_clock_interrupts;
cyg_int32 min_clock_latency = 0x7FFFFFFF;
cyg_int32 max_clock_latency = 0;
bool measure_clock_latency = false;
#endif

#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_DSR_LATENCY)
cyg_tick_count total_clock_dsr_latency, total_clock_dsr_calls;
cyg_int32 min_clock_dsr_latency = 0x7FFFFFFF;
cyg_int32 max_clock_dsr_latency = 0;
cyg_uint32 clock_dsr_start = 0;
#endif

// -------------------------------------------------------------------------

cyg_uint32 Cyg_RealTimeClock::isr(cyg_vector vector, CYG_ADDRWORD data)
{
//    CYG_REPORT_FUNCTION();

#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_LATENCY) && defined(HAL_CLOCK_LATENCY)
    if (measure_clock_latency) {
        cyg_int32 delta;
        HAL_CLOCK_LATENCY(&delta);
        // Note: Ignore a latency of 0 when finding min_clock_latency.
        if (delta > 0) {
            // Valid delta measured
            total_clock_latency += delta;
            total_clock_interrupts++;
            if (min_clock_latency > delta) min_clock_latency = delta;
            if (max_clock_latency < delta) max_clock_latency = delta;
        }
    }
#endif

    CYG_INSTRUMENT_CLOCK( ISR, 0, 0);

    HAL_CLOCK_RESET( CYGNUM_HAL_INTERRUPT_RTC, CYGNUM_KERNEL_COUNTERS_RTC_PERIOD );

    Cyg_Interrupt::acknowledge_interrupt(CYGNUM_HAL_INTERRUPT_RTC);

#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_DSR_LATENCY)
    HAL_CLOCK_READ(&clock_dsr_start);
#endif    
    return Cyg_Interrupt::CALL_DSR|Cyg_Interrupt::HANDLED;
}

// -------------------------------------------------------------------------

void Cyg_RealTimeClock::dsr(cyg_vector vector, cyg_ucount32 count, CYG_ADDRWORD data)
{
//    CYG_REPORT_FUNCTION();

#if defined(CYGVAR_KERNEL_COUNTERS_CLOCK_DSR_LATENCY) && defined(HAL_CLOCK_LATENCY)
    if (measure_clock_latency) {
        cyg_int32 delta;
        HAL_CLOCK_READ((cyg_uint32 *)&delta);
        delta -= clock_dsr_start;
        // Note: Ignore a latency of <= 0 when finding min_clock_latency.
        if (delta > 0 ) {
            // Valid delta measured
            total_clock_dsr_latency += delta;
            total_clock_dsr_calls++;
            if (min_clock_dsr_latency > delta) min_clock_dsr_latency = delta;
            if (max_clock_dsr_latency < delta) max_clock_dsr_latency = delta;
        }
    }
#endif    

    Cyg_RealTimeClock *rtc = (Cyg_RealTimeClock *)data;

    CYG_INSTRUMENT_CLOCK( TICK_START,
                          rtc->current_value_lo(),
                          rtc->current_value_hi());
                          
    rtc->tick( count );

#ifdef CYGSEM_KERNEL_SCHED_TIMESLICE
#if    0 == CYGINT_KERNEL_SCHEDULER_UNIQUE_PRIORITIES

    // If timeslicing is enabled, call the scheduler to
    // handle it. But not if we have unique priorities.
    
    Cyg_Scheduler::scheduler.timeslice();

#endif
#endif

    CYG_INSTRUMENT_CLOCK( TICK_END,
                          rtc->current_value_lo(),
                          rtc->current_value_hi());
    
}

#endif

// -------------------------------------------------------------------------
// EOF common/clock.cxx