summaryrefslogtreecommitdiffhomepage
path: root/digital/io-hub/src/apbirthday/top.cc
blob: 79b97bc43273e50b29cab3a3bf3e3e3cc869c47f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// io-hub - Modular Input/Output. {{{
//
// Copyright (C) 2013 Nicolas Schodet
//
// APBTeam:
//        Web: http://apbteam.org/
//      Email: team AT apbteam DOT org
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
//
// }}}
#include "top.hh"
#include "robot.hh"
#include "playground_2013.hh"
#include "bot.hh"

extern "C" {
#define ANGFSM_NAME AI
#include "angfsm.h"
}

#ifdef TARGET_host
typedef unsigned Branch;
#else
typedef angfsm_AI_branch_t Branch;
#endif

#include <cmath>

/// Top context.
struct top_t
{
    /// Candles decision information.
    Strat::CandlesDecision candles;
    /// Last blown candles.
    int candles_last_blown[Candles::FLOOR_NB];
};
static top_t top;

/// Compute the angle of the normal to the cake at the given point.
static uint16_t
top_cake_angle (const vect_t &pos)
{
    float dx = pos.x - pg_cake_pos.x;
    float dy = pos.y - pg_cake_pos.y;
    float angle_rad = std::atan2 (dy, dx);
    uint16_t angle = angle_rad * ((1 << 16) / (2 * M_PI));
    return angle;
}

/// Compute the angle of the normal to the cake at the robot position.
static uint16_t
top_cake_angle_robot ()
{
    Position pos = robot->asserv.get_position ();
    return top_cake_angle (pos.v);
}

int
top_candle_for_angle (uint16_t a, Candles::Floor floor, int dir_sign)
{
    /// Information for each floor.
    struct FloorInfo
    {
        /// Angle of the first candle, also include angle offset due
        /// to arm position.
        uint16_t first_angle;
        /// Index of the first candle.
        int first_index;
        /// Angle between candles.
        uint16_t inter_angle;
    };
    static const FloorInfo floor_info[Candles::FLOOR_NB] =
    {
#define NEAR_ARM_OFFSET_DEG 0
#define FAR_ARM_OFFSET_DEG 9
        { G_ANGLE_UF016_DEG (180 + 180. / (12 * 2) - NEAR_ARM_OFFSET_DEG), 8,
            G_ANGLE_UF016_DEG (180. / 12) },
        { G_ANGLE_UF016_DEG (180 + 180. / (8 * 2) - FAR_ARM_OFFSET_DEG), 0,
            G_ANGLE_UF016_DEG (180. / 8) },
    };
    // Compute for the forward direction.
    const FloorInfo &i = floor_info[floor];
    int index = i.first_index + (a - i.first_angle) / i.inter_angle;
    // For backward, add 1.
    if (dir_sign == -1)
        index++;
    return index;
}

/// Start follow mode, ask Strat for what to do.
static bool
top_follow_start ()
{
    uint16_t robot_angle = top_cake_angle_robot ();
    bool go_candle = robot->strat.decision_candles (top.candles, robot_angle);
    if (go_candle)
    {
        for (int floor = Candles::NEAR; floor < Candles::FLOOR_NB; floor++)
        {
            top.candles_last_blown[floor] =
                top_candle_for_angle (robot_angle, Candles::Floor (floor),
                                      top.candles.dir_sign);
        }
    }
    return go_candle;
}

/// Can follow cake, decide if this is a good thing, or leave.
static Branch
top_follow_or_leave ()
{
    if (top_follow_start ())
    {
        robot->asserv.follow (top.candles.dir_sign == 1
                              ? Asserv::FORWARD : Asserv::BACKWARD);
        return FSM_BRANCH (candles);
    }
    else
    {
        Position robot_pos = robot->asserv.get_position ();
        int dist = 0;
        // If near a border, need to move before turning.
        if (robot_pos.v.y > pg_length - BOT_SIZE_RADIUS - 30)
        {
            if (robot_pos.a < G_ANGLE_UF016_DEG (180))
                dist = - (BOT_SIZE_RADIUS + 30 - BOT_SIZE_FRONT);
            else
                dist = BOT_SIZE_RADIUS + 30 - BOT_SIZE_BACK;
        }
        // If near an obstacle, also need to move to undeploy arm.
        else if (top_follow_blocking (1))
        {
            dist = -100;
        }
        // Do not use move_distance, it depends too much on current robot
        // orientation which is not stable.
        uint16_t robot_angle = top_cake_angle (robot_pos.v);
        if (dist)
        {
            vect_t dst;
            vect_from_polar_uf016 (&dst, dist,
                                   robot_angle + G_ANGLE_UF016_DEG (90));
            vect_translate (&dst, &robot_pos.v);
            robot->asserv.goto_xy (dst, Asserv::REVERT_OK);
            return FSM_BRANCH (tangent);
        }
        else
        {
            robot->asserv.goto_angle (robot_angle);
            return FSM_BRANCH (turn);
        }
    }
}

bool
top_follow_blocking (int dir_sign)
{
    Position robot_pos = robot->asserv.get_position ();
    uint16_t robot_angle = top_cake_angle (robot_pos.v);
    // Check for an obstacle on a small segment.
    vect_t dst;
    uint16_t dst_angle = robot_angle + dir_sign * G_ANGLE_UF016_DEG (30);
    vect_from_polar_uf016 (&dst, pg_cake_radius + pg_cake_distance
                           + BOT_SIZE_SIDE, dst_angle);
    vect_translate (&dst, &pg_cake_pos);
    return robot->obstacles.blocking (robot_pos.v, dst, 200);
}

void
top_update ()
{
    if (FSM_CAN_HANDLE (AI, top_follow_finished))
    {
        // Update consign.
        int cons;
        const int k = 200;
        const int front_offset = 0x07fb;
        const int back_offset = 0x09af;
        if (top.candles.dir_sign == 1)
            cons = - robot->hardware.adc_cake_front.read () + front_offset;
        else
            cons = robot->hardware.adc_cake_back.read () - back_offset;
        robot->asserv.follow_update (cons * k / 1000);
    }
}

bool
top_fsm_gen_event ()
{
    if (ANGFSM_CAN_HANDLE (AI, top_follow_finished))
    {
        uint16_t robot_angle = top_cake_angle_robot ();
        int dir_sign = top.candles.dir_sign;
        // Check for movement end.
        if ((robot_angle - top.candles.end_angle) * dir_sign > 0)
        {
            if (ANGFSM_HANDLE (AI, top_follow_finished))
                return true;
        }
        // Check for obstacle.
        if (top_follow_blocking (dir_sign))
            if (ANGFSM_HANDLE (AI, top_follow_blocked))
                return true;
        // Check for a candle to blow.
        for (int floor = Candles::NEAR; floor < Candles::FLOOR_NB; floor++)
        {
            int candle = top_candle_for_angle (robot_angle,
                                               Candles::Floor (floor),
                                               top.candles.dir_sign);
            if (candle != top.candles_last_blown[floor])
            {
                robot->candles.blow (candle);
                top.candles_last_blown[floor] = candle;
            }
        }
    }
    return false;
}

ANGFSM_INIT

ANGFSM_STATES (
            // Initial state.
            TOP_START,
            // Init done, waiting for rount start.
            TOP_INIT,
            // Decision state, one stop, one cycle.
            TOP_DECISION,
            // Candles: go to cake, with a normal move.
            TOP_CANDLES_GOTO_NORMAL,
            // Candles: deploy arm.
            TOP_CANDLES_ENTER_DEPLOY,
            // Candles: turn to be in position to follow the cake.
            TOP_CANDLES_ENTER_TURN,
            // Candles: follow the cake curve until destination angle, blowing
            // candles on the way.
            TOP_CANDLES_FOLLOW,
            // Candles: tangent move to escape from an obstacle.
            TOP_CANDLES_LEAVE_TANGENT_MOVE,
            // Candles: turn to leave, undeploy arm as soon as possible.
            TOP_CANDLES_LEAVE_TURN,
            // Candles: go away so that the robot is free to turn.
            TOP_CANDLES_LEAVE_GO_AWAY)

ANGFSM_EVENTS (
            // Cake following finished (end point reached).
            top_follow_finished,
            // Problem with cake following.
            top_follow_blocked)

ANGFSM_START_WITH (TOP_START)

FSM_TRANS (TOP_START, init_done, TOP_INIT)
{
    // Color dependent init can go here.
}

FSM_TRANS (TOP_INIT, init_start_round, TOP_DECISION)
{
}

FSM_TRANS_TIMEOUT (TOP_DECISION, 1,
                   candles, TOP_CANDLES_GOTO_NORMAL,
                   none, TOP_INIT)
{
    vect_t d_pos;
    Strat::Decision d = robot->strat.decision (d_pos);
    switch (d)
    {
    case Strat::CANDLES:
        robot->move.start (d_pos, Asserv::BACKWARD, pg_cake_radius
                           + pg_cake_distance + BOT_SIZE_SIDE);
        return FSM_BRANCH (candles);
    default:
        ucoo::assert_unreachable ();
    }
}

FSM_TRANS (TOP_CANDLES_GOTO_NORMAL, move_success, TOP_CANDLES_ENTER_DEPLOY)
{
    ANGFSM_HANDLE (AI, ai_candle_deploy);
}

FSM_TRANS (TOP_CANDLES_GOTO_NORMAL, move_failure, TOP_DECISION)
{
    robot->strat.failure ();
}

FSM_TRANS (TOP_CANDLES_ENTER_DEPLOY, ai_candle_success, TOP_CANDLES_ENTER_TURN)
{
    robot->asserv.goto_angle (top_cake_angle_robot ()
                              + G_ANGLE_UF016_DEG (90));
}

FSM_TRANS (TOP_CANDLES_ENTER_DEPLOY, ai_candle_failure,
           TOP_CANDLES_LEAVE_GO_AWAY)
{
    robot->asserv.move_distance (BOT_SIZE_RADIUS - BOT_SIZE_SIDE);
}

FSM_TRANS (TOP_CANDLES_ENTER_TURN, robot_move_success,
           tangent, TOP_CANDLES_LEAVE_TANGENT_MOVE,
           turn, TOP_CANDLES_LEAVE_TURN,
           candles, TOP_CANDLES_FOLLOW)
{
    return top_follow_or_leave ();
}

FSM_TRANS (TOP_CANDLES_ENTER_TURN, robot_move_failure, TOP_CANDLES_LEAVE_TURN)
{
    robot->asserv.goto_angle (top_cake_angle_robot ());
}

FSM_TRANS (TOP_CANDLES_FOLLOW, top_follow_finished,
           tangent, TOP_CANDLES_LEAVE_TANGENT_MOVE,
           turn, TOP_CANDLES_LEAVE_TURN,
           candles, TOP_CANDLES_FOLLOW)
{
    return top_follow_or_leave ();
}

FSM_TRANS (TOP_CANDLES_FOLLOW, top_follow_blocked,
           tangent, TOP_CANDLES_LEAVE_TANGENT_MOVE,
           turn, TOP_CANDLES_LEAVE_TURN,
           candles, TOP_CANDLES_FOLLOW)
{
    return top_follow_or_leave ();
}

FSM_TRANS (TOP_CANDLES_FOLLOW, robot_move_failure,
           tangent, TOP_CANDLES_LEAVE_TANGENT_MOVE,
           turn, TOP_CANDLES_LEAVE_TURN,
           candles, TOP_CANDLES_FOLLOW)
{
    return top_follow_or_leave ();
}

FSM_TRANS (TOP_CANDLES_LEAVE_TANGENT_MOVE, robot_move_success,
           TOP_CANDLES_LEAVE_TURN)
{
    robot->asserv.goto_angle (top_cake_angle_robot ());
}

FSM_TRANS (TOP_CANDLES_LEAVE_TANGENT_MOVE, robot_move_failure,
           TOP_CANDLES_LEAVE_TURN)
{
    robot->asserv.goto_angle (top_cake_angle_robot ());
}

FSM_TRANS (TOP_CANDLES_LEAVE_TURN, robot_move_success,
           TOP_CANDLES_LEAVE_GO_AWAY)
{
    // TODO: undeploy earlier, by computing arm end position.
    ANGFSM_HANDLE (AI, ai_candle_undeploy);
    robot->asserv.move_distance (BOT_SIZE_RADIUS - BOT_SIZE_SIDE);
}

FSM_TRANS (TOP_CANDLES_LEAVE_TURN, robot_move_failure,
           TOP_CANDLES_LEAVE_GO_AWAY)
{
    ANGFSM_HANDLE (AI, ai_candle_undeploy);
    robot->asserv.move_distance (BOT_SIZE_RADIUS - BOT_SIZE_SIDE);
}

FSM_TRANS (TOP_CANDLES_LEAVE_GO_AWAY, robot_move_success, TOP_DECISION)
{
}

FSM_TRANS (TOP_CANDLES_LEAVE_GO_AWAY, robot_move_failure, TOP_DECISION)
{
}