summaryrefslogtreecommitdiff
path: root/Debugger/debug_stub.S
blob: b020a0951f50eb8b4d3d31f373014cd675f234e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
/** @file debug_stub.S
 *  @brief ARM Breakpoint Debugger support routines
 *
 */

/* Copyright (C) 2007-2011 the NxOS developers
 *
 * Module Developed by: TC Wan <tcwan@cs.usm.my>
 *
 * See AUTHORS for a full list of the developers.
 *
 * See COPYING for redistribution license
 *
 */

 /* GDB sparc-stub.c comments header included below to document GDB Server Remote protocol */
 /* This header has been modified to include additional commands not documented in the header stub */

 /****************************************************************************

		THIS SOFTWARE IS NOT COPYRIGHTED

   HP offers the following for use in the public domain.  HP makes no
   warranty with regard to the software or it's performance and the
   user accepts the software "AS IS" with all faults.

   HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
   TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
   OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

****************************************************************************/

/****************************************************************************
 *  Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
 *
 *  Module name: remcom.c $
 *  Revision: 1.34 $
 *  Date: 91/03/09 12:29:49 $
 *  Contributor:     Lake Stevens Instrument Division$
 *
 *  Description:     low level support for gdb debugger. $
 *
 *  Considerations:  only works on target hardware $
 *
 *  Written by:      Glenn Engel $
 *  ModuleState:     Experimental $
 *
 *  NOTES:           See Below $
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  This code has been extensively tested on the Fujitsu SPARClite demo board.
 *
 *  To enable debugger support, two things need to happen.  One, a
 *  call to set_debug_traps() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().  Breakpoint()
 *  simulates a breakpoint by executing a trap #1.
 *
 *************
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    GrrrrRRRR..   set the value of the CPU registers     OK or ENN
 *					where register values are given as
 *					32-bit hex values in the sequence:
 *					User CPSR, R0, R1, ..., R15
 *	  px			get the value of one register (x)      hex data or ENN
 *	  Px=rrrr		set the value of one register (x) to   OK or ENN
 *					32-bit hex value rrrr.
 *					x = ['0','F'] for R0-R15, '!' for User CPSR
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 *    zt,AA..AA,k	Remove a Breakpoint of type t at addr  OK or ENN
 *                  AA..AA of kind k
 *    Zt,AA..AA,k	Insert a Breakpoint of type t at addr  OK or ENN
 *                  AA..AA of kind k
 *                  t 0: memory breakpoint
 *                    1: hardware breakpoint
 *                    2: write watchpoint
 *                    3: read watchpoint
 *                    4: access watchpoint
 *                  k: 2 (16-bit Thumb), 3 (32-bit Thumb2)
 *                       or 4 (32-bit ARM) for t=[0,1]
 *                     Num. bytes to watch for t=[3,4]
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 ****************************************************************************/
 /* Modified GDB Server Remote Protocol definition from GDB's sparc-stub.c Comment Header included above
  * Additional commands from GDB Reference Appendix D.2
  */

#define __ASSEMBLY__
#include "debug_stub.h"
#include "debug_macros.h"

/* Macro definitions */

/* _check_msgseparator
 *      Look for separator ','
 *  On entry:
 *    bufferptr: points to the parameter buffer [can't be R0]
 *  On exit:
 *    R0: destroyed
 *    bufferptr: points to the next character location in the parameter buffer
 *    Flags: Updated
 */

    .macro  _check_msgseparator bufferptr
    ldrb    r0, [\bufferptr], #1                /* get separator */
    cmp     r0, #MSGBUF_SEPCHAR
    .endm

/* _check_msgassignment
 *      Look for assignment '='
 *  On entry:
 *    bufferptr: points to the parameter buffer [can't be R0]
 *  On exit:
 *    R0: destroyed
 *    bufferptr: points to the next character location in the parameter buffer
 *    Flags: Updated
 */

    .macro  _check_msgassignment bufferptr
    ldrb    r0, [\bufferptr], #1                /* get separator */
    cmp     r0, #MSGBUF_SETCHAR
    .endm

.bss
.align 4
debug_state:
	.word	0x0
debug_curr_breakpoint:
	.word	0x0
debug_InMsgBuf:
	.space	MSGBUF_SIZE,0
debug_OutMsgBuf:
	.space	MSGBUF_SIZE,0

.data
.align 4
debug_ValidResponsePrefix:
	.byte	'+','$',0

debug_ErrorResponsePrefix:
	.byte	'-','$','E',0

debug_SignalResponsePrefix:
	.byte	'+','$','S',0

debug_OkResponse:
	.byte	'+','$','O','K',0

/* The CmdIndexTable and CmdJumpTable must be kept in sync */
debug_cmdIndexTable:
	.byte	'g','G','p','P','m','M','c','s','k','z','Z','?',0

/* Command Handlers
 * On entry:
 *		R0: Input Message Parameter Buffer address pointer (points to contents after '$' and '<cmdchar>')
 */
debug_cmdJumpTable:
	.word	_dbg__cmd_GetAllRegs				/* 'g' */
	.word	_dbg__cmd_SetAllRegs	   			/* 'G' */
	.word	_dbg__cmd_GetOneReg				    /* 'p' */
	.word	_dbg__cmd_SetOneReg				    /* 'P' */
	.word	_dbg__nop							/* 'm' */
	.word	_dbg__nop							/* 'M' */
	.word	_dbg__nop							/* 'c' */
	.word	_dbg__nop							/* 's' */
	.word	_dbg__nop							/* 'k' */
	.word	_dbg__cmd_remove_breakpoint			/* 'z' */
	.word	_dbg__cmd_insert_breakpoint			/* 'Z' */
	.word	_dbg__nop							/* '?' */
	.word	0

/*
 * To determine the next instruction to execute, we need to check current (breakpointed) instruction
 * and determine whether it will be executed or not. This necessitates a mini instruction decoder
 * that can check the type of instruction, as well as if it'll affect the PC.
 * The instruction decoder used here is table based. Each entry in the table consists of:
 *		Instruction Identifier (IID), Instruction Bitmask (IBM), Instruction Handler Address (IHA)
 * Null entries are placed at the end of the table.
 *
 * This allows for a flexible approach to handling instructions that we're interested in, at the expense
 * of memory usage.
 *
 * For ARM, the IID & IBM are both 4 bytes, whereas the Thumb IID & IBM are 2 bytes.
 * The IHA is always 4 bytes.
 */

/* ARM Instruction Decode Table
 *	.word IID, IBM, IHA (12 bytes)
 */

debug_armDecodeTable:
	.word	0x0000f000, 0x0c00f000, _arm_data_instr_handler	/* Data Processing instr with Rd = R15 */
	.word	0x012fff10, 0x0ffffff0, _arm_bx_blx_handler		/* BX or BLX */
	.word	0x0410f000, 0x0410f000, _arm_ldr_pc_handler		/* LDR with Rd = PC */
/*	.word	0x06000010, 0x0e000010, _arm_undef_handler	*/	/* Undefined instr: shouldn't occur, as it would've been trapped already. See _dbg_next_instruction_addr */
	.word	0x08108000, 0x0e108000, _arm_ldm_pc_handler		/* LDM {pc} */
	.word	0x0a000000, 0x0e000000, _arm_b_bl_handler		/* B or BL. Note v4t does not have BLX instr */
	.word	0x0c000000, 0x0c000000, _arm_coproc_swi_handler	/* Coprocessor instr or SWI */
	.word	0x0,0x0,0x0										/* Null Entry */

/* Thumb Instruction Decode Table
 * 	.hword IID, IBM
 * 	.word IHA (8 bytes)
 */

debug_thumbDecodeTable:
	.hword	0x4700, 0xff07
	.word	_thumb_bx_blx_handler				/* BX or BLX. Note: b7 (H1) is not matched in the mask */
	.hword	0xbd00, 0xff00
	.word	_thumb_poppc_handler				/* PUSH/POP, specifically POP {Rlist,PC} */
	.hword	0xd000, 0xf000
	.word	_thumb_bcond_swi_handler			/* B<cond> or SWI */
	.hword	0xe000, 0xf800
	.word	_thumb_b_handler					/* B */
	.hword	0xf000, 0xf000
	.word	_thumb_long_b_handler				/* Long BL or BLX (4 bytes) Note: b11 (H) indicates 1st or 2nd instr */
	.hword	0x0,0x0
	.word	0x0									/* Null Entry */

/* ARM Condition Code Mapping Table
 * Converts Instruction encoding to SPSR Flags.
 * b31 b30 b29 b28
 *  N   Z   C   V
 * Indexed according to Instruction Encoding order (pg 30, Table 6, ATMEL ARM7TDMI Data Sheet)
 * Condition Code stored in MSN(set), LSN(clr) order
 * Note1: 0x00 = AL. NV is deprecated, treat as AL
 * Note2: 0xFF indicates that the condition checks needs to be handled separately (complex checks)
 *
 *		EQ: Z set
 *		NE: Z clr
 *		HS/CS: C set
 *		LO/CC: C clr
 *		MI: N set
 *		PL: N clr
 *		VS: V set
 *		VC: V clr
 *		HI: C set AND Z clr
 *		LS: C clr AND Z set
 */


debug_armCondCodeTable:
			/* EQ,   NE, HS/CS, LO/CC,   MI,   PL,   VS,   VC,   HI,   LS,   GE,   LT,   GT,   LE,   AL,   NV */
	.byte	 0x40, 0x04,  0x20,  0x02, 0x80, 0x08, 0x10, 0x01, 0x24, 0x42, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00

/* ARM Complex Condition Code Mapping Table
 * Converts Instruction encoding to SPSR Flags.
 * b31 b30 b29 b28
 *  N   Z   C   V
 * Indexed according to Instruction Encoding order (pg 30, Table 6, ATMEL ARM7TDMI Data Sheet)
 * for GE, LT, GT and LE instructions only
 * Condition Code stored in the following order:
 *	 b7  b6  b5  b4   b3     b2   b1    b0
 *	  -   -   - ANDOR  -  Z set  AND  N==V		(bit set = 1)
 *	  -   -   - ANDOR  -  Z clr   OR  N!=V		(bit clr = 0)
 *
 *		GE: N == V
 *		LT: N != V
 *		GT: Z clr AND (N == V)
 *		LE: Z set OR (N != V)
 */

#define COMPLEX_CONDCODE_START	   0x0A
#define COMPLEX_CONDCODE_NEQV_MASK 0x01
#define COMPLEX_CONDCODE_AND_MASK  0x02
#define COMPLEX_CONDCODE_ZSET_MASK 0x04
#define COMPLEX_CONDCODE_ANDOR_MASK 0x10

#define COMPLEX_CONDCODE_NFLAG		0x08
#define COMPLEX_CONDCODE_ZFLAG		0x04
#define COMPLEX_CONDCODE_CFLAG		0x02
#define COMPLEX_CONDCODE_VFLAG		0x01


debug_armComplexCCTable:
			/* GE,   LT,   GT,   LE */
	.byte	 0x01, 0x00, 0x15, 0x12

.code 32
.text
.align 	4
	.extern __breakpoints_num__
	.extern dbg__hasDebugMsg			/* Check for message from the communications link */
	.extern dbg__getDebugMsg			/* Read a message from the communications link */
	.extern	dbg__putDebugMsg			/* Write a message to the communications link */
	.extern dbg__runloopTasks           /* Platform specific Run Loop processing */


/* The Debugger Interface can handle a total of (n-1) Breakpoint States and 1 Single Stepping State,
 * where n is a power of 2. The value of n is given by __breakpoints_num__ defined in the linker file.
 *
 * In addition, a Debugger Stack contains the User Mode Register Stack Frame + SPSR + Bkpt Instr Addr.
 * These are currently stored in the .stack area in RAM, so there is no fixed address
 * location that is used for this purpose.
 *
 * The Breakpoint feature assumes that the program is executed in RAM. It is not possible
 * to set dynamic breakpoints for programs executed from Flash in the AT91SAM7S which lacks
 * instruction breakpointing support in hardware without using JTAG. The only type of breakpoints
 * that can be supported in Flash based programs are Static (predefined) breakpoints inserted into
 * the code.
 *
 * Each Breakpoint State i is a struct comprising the Breakpoint Address + Memory Contents
 * stored in 8 bytes as:
 *    [High Memory Address]
 *		ADDR [i*8+4]: Memory Contents		(32 bits)
 *		ADDR [i*8]:   Breakpoint Address	(31 bits, b0 = THUMB flag [not implemented yet])
 *	  [Low Memory Address]
 *
 * A Non-zero Breakpoint Address means that the breakpoint is active, whereas the memory contents
 * contains the instruction which resided at that address initially (now replaced by a BKPT <index>
 * instruction).
 * Note: Currently it is not possible to resume execution of a program with breakpoints enabled
 * after a RESET, since the RESET will clear all contents of the stack, destroying the instruction
 * contained in a given breakpoint.
 * Fortunately the NXT will also need to reload the program into RAM so this is not expected to be
 * an issue.
 *
 * The Memory Map for the Debugger State is as follows:
 *
 *	[High Memory Address]			__breakpoints_end__
 *		Breakpoint 07 State
 *		Breakpoint 06 State
 *			...
 *		Breakpoint 02 State
 *		Breakpoint 01 State
 *		Single Step   State			__debugger_stack__ / __breakpoints_start__
 *		User Mode R15
 *		User Mode R14
 *			...
 *		User Mode R02
 *		User Mode R01
 *		User Mode R00
 *		User Mode CPSR (UNDEF SPSR)
 *		UNDEF Next Instr Addr 		__debugger_stack_bottom__
 *  [Low Memory Address]
 *
 *	Each Breakpoint State will initially be zeroed.
 *
 */
 /* FIXME: The Debugger Stack Frame is probably not 100% consistent with the order that
    GDB expects in the g/G messages. CSPR is probably located above R15 */

#ifndef __NXOS__
/****************************************************************************
 *
 * GDB Debugger Invocation Routine for NXT Firmware
 *
 ****************************************************************************/
    .code 16
    .align 2
    .global cCommHandleDebug
    .thumb_func
/* cCommHandleDebug
 * Switch Mode to Debugger.
 *      Used by NXT Firmware only
 *
 * UWORD cCommHandleDebug(UBYTE *pInBuf, UBYTE CmdBit, UWORD MsgLength);
 *
 * On Entry, we're in SVC mode. We need to setup the USB Buffers, and switch mode to
 * ABORT mode to handle the incoming message using a Manual Breakpoint instruction.
 * When DEBUG is exited, the execution resumes from the instruction following the Breakpoint.
 */
cCommHandleDebug:
        push  {r0-r3}               /* store all argX registers */
        bl    dbg__copyNxtDebugMsg  /* setup Debugger Message Buffers, validate input */
        pop   {r0-r3}               /* restore all values */
        dbg__bkpt_thumb
        mov   r0, #0                /* FIXME: Return Status */
        bx    lr
#endif

/****************************************************************************
 *
 * GDB Debugger Init and Breakpoint Handler Routines
 *
 ****************************************************************************/
    .code 32
    .align 4
 	.global dbg__bkpt_init
/* dbg__bkpt_init
 * 		GDB set_debug_traps() routine
 */
dbg__bkpt_init:
    push    {lr}
	bl		_dbg__clear_breakpoints
	mov		r2, #0
	ldr		r1, =debug_curr_breakpoint
	str		r2, [r1]
	ldr		r0, =debug_InMsgBuf
	strb	r2, [r0]
	ldr		r1, =debug_OutMsgBuf
	strb	r2, [r1]
	bl		dbg__comm_init				/* Pass R0: Rx Buffer, R1: Tx Buffer to comm submodule */

/* FIXME: Initialize other stuff here */
	_dbg_setstate DBG_INIT
    pop     {lr}
    bx      lr                          /* Must return via BX; may have been called from Thumb mode (NXT Firmware) */


/* _dbg__flush_icache
 *		Flush the Instruction cache
 *		Defined by GDB Stub, but not needed for ARMv4T architecture
 */
_dbg__flush_icache:
		/* nop */
		bx	lr


	.global	dbg__thumb_bkpt_handler
/* dbg__thumb_bkpt_handler
 * 		GDB handle_exception() routine (Thumb Mode)
 */
dbg__thumb_bkpt_handler:
/* On entry, r0 contains breakpoint index value */
	mov	r4, #BKPT16_AUTO_BKPT
	and	r4, r0, #BKPT16_AUTO_BKPT	/* keep AUTO flag value in r4 */
	bic	r0, r0, #BKPT16_AUTO_BKPT	/* mask out AUTO flag */
	_dbg_setcurrbkpt_index r0		/* keep current breakpoint index in memory */
	ldr	r1, =BKPT16_MANUAL_BKPT
	teq	r0, r1
	beq	_process_manual_breakpoint_thumb
	ldr	r1, =__breakpoints_num__
	cmp	r0, r1					/* Sanity check that index is in range */
	bhs	dbg__bkpt_offset_outofrange
/* Valid index value found */
	teq	r4, #0					/* Check if AUTO flag set */
	bne	_process_auto_breakpoint
/* else */
	_dbg_setstate DBG_NORMAL_BKPT_THUMB
	b	_process_normal_breakpoint

	.global	dbg__arm_bkpt_handler
/* dbg__arm_bkpt_handler
 * 		GDB handle_exception() routine (ARM Mode)
 */
dbg__arm_bkpt_handler:
/* On entry, r0 contains breakpoint index value */
	mov	r4, #BKPT32_AUTO_BKPT
	and	r4, r0, #BKPT32_AUTO_BKPT	/* keep AUTO flag value in r4 */
	bic	r0, r0, #BKPT32_AUTO_BKPT	/* mask out AUTO flag */
	_dbg_setcurrbkpt_index r0		/* keep current breakpoint index in memory */
	ldr	r1, =BKPT32_MANUAL_BKPT
	teq	r0, r1
	beq	_process_manual_breakpoint_arm
	ldr	r1, =__breakpoints_num__
	cmp	r0, r1					/* Sanity check that index is in range */
	bhs	dbg__bkpt_offset_outofrange
/* Valid index value found */
	teq	r4, #0					/* Check if AUTO flag set */
	bne	_process_auto_breakpoint
/* else */
	_dbg_setstate DBG_NORMAL_BKPT_ARM
/*	b	_process_normal_breakpoint */

_process_normal_breakpoint:
	bl	_dbg__restore_breakpoints
	bl	_dbg__restore_singlestep
	bl	_dbg__clear_singlestep
	bl	_dbg__flush_icache
	b	dbg__bkpt_waitCMD

_process_auto_breakpoint:
/* Load Auto BKPT for Breakpoint index given in r0 */
	_index2bkptindex_addr	r0, r1	/* Calculate Breakpoint Entry Address */
	ldm	r1, {r1, r2}				/* r1: Breakpoint Address, r2: Breakpoint Instruction */
	teq	r1, #0						/* Check that Breakpoint is active */
	beq	dbg__bkpt_inactive
	bl	_dbg__activate_one_breakpoint
	bl	_dbg__restore_singlestep
	bl	_dbg__clear_singlestep
	b	__dbg__resume_execution

_process_manual_breakpoint_thumb:
	_dbg_setstate DBG_MANUAL_BKPT_THUMB
	b	dbg__bkpt_waitCMD

_process_manual_breakpoint_arm:
	_dbg_setstate DBG_MANUAL_BKPT_ARM
/*	b	dbg__bkpt_waitCMD */

dbg__bkpt_inactive:
/*	b	dbg__bkpt_waitCMD */

dbg__bkpt_offset_outofrange:
/*	b	dbg__bkpt_waitCMD */

	.global	dbg__bkpt_waitCMD
/* dbg__bkpt_waitCMD
 *		GDB Stub Remote Command Handler
 */

/****************************************************************************
 *
 * GDB Server Command Processing Routines
 *
 ****************************************************************************/
dbg__bkpt_waitCMD:
	bl		dbg__getDebugMsg				/* Read new message from Debugger, buflen in R0, 0 if none, -1 if error, msgbuf pointer in R1 */
	cmp		r0, #0
	beq     _dbg__housekeeping              /* No message yet, do housekeeping tasks */
	movlt	r0, #MSG_ERRCHKSUM				/* Message invalid, checksum error? */
	blt		_dbg__cmdError					/* Send response to GDB server */
/* Message now has $<packet info>\0 */
    mov     r4, r1							/* Use R4 as buffer pointer */
	ldrb	r0, [r4], #1					/* Look for '$' */
	teq		r0, #MSGBUF_STARTCHAR
	movne	r0, #MSG_ERRFORMAT				/* Message Format invalid (not '$') */
	bne		_dbg__cmdError					/* Shouldn't happen */
	ldrb	r0, [r4], #1					/* Look for command char */
	bl		_dbg__cmdChar2Index				/* Index in R0 */
	mov		r1, #CMDINDEX_OUTOFRANGE
	teq		r0, r1
	moveq	r0, #MSG_UNKNOWNCMD				/* Out of range, Command character not recognized */
	beq		_dbg__cmdError					/* Send response to GDB server */

_dbg__cmdExists:
	mov		r3, r0							/* put Command Handler Index in R3 */
	mov		r0, r4							/* R0 now contains Input Message Buffer Parameter Pointer (previously in R4) */
	_dbg_jumpTableHandler	debug_cmdJumpTable, r2, r3		/* Call Command Handler Routine, use R2 as jump address pointer */
	b dbg__bkpt_waitCMD

_dbg__cmdError:
	_dbg_outputMsgStatusErr
	bl		dbg__putDebugMsg				/* Send error response to the GDB server */
_dbg__housekeeping:
	bl      dbg__runloopTasks               /* Execute platform run loop tasks while in ABRT mode */
	b 		dbg__bkpt_waitCMD


/* _dbg__cmdChar2Index
 *		Convert Command Character to Jump Table Index
 *		On entry:
 *			r0: command character
 *		On exit:
 *			r0: jump table index (-1 for command not found)
 *			R1: destroyed
 *			R2: destroyed
 *			R3: destroyed
 */
_dbg__cmdChar2Index:
	mov		r1, r0							/* Copy command character to r1 */
	mov		r0, #0							/* Clear return value */
	ldr		r3, =debug_cmdIndexTable		/* Convert command to index using r3 as Index Lookup Address Pointer */
1:	ldrb	r2, [r3, r0]					/* Get table entry */
	teq		r2, #0
	moveq	r0, #CMDINDEX_OUTOFRANGE	    /* End of Index Table, Not found */
	beq		_exit_cmdIndexTable
	teq		r1, r2
	addne	r0, #1							/* Increment Index */
	bne		1b								/* No match, skip to next command char */
_exit_cmdIndexTable:
	bx		lr

/* __dbg__cmdParamLen
 *   Determines the length of the parameter buffer for a given command
 *   On entry:
 *      R0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *   On exit:
 *      R0: Address of parameter buffer (preserved)
 *      R1: length
 */
__dbg__cmdParamLen:
    stmfd   sp!, {r0,r2,lr}     /* R2: scratch register */
    mov     r1, #0
1:  ldrb    r2, [r0], #1
    teq     r2, #0
    addne   r1, r1, #1
    bne     1b
    ldmfd   sp!, {r0,r2,pc}

/* __dbg__procCmdOk
 *      Common subroutine exit stub to return Command Ok Status for Command Handlers
 *      DO NOT CALL THIS STUB DIRECTLY! It Assumes that the return address is in the stack.
 *
 */
__dbg__procCmdOk:
    _dbg_outputMsgStatusOk
    bl      dbg__putDebugMsg                /* Send error response to the GDB server */
    ldmfd   sp!, {pc}

/* __dbg__procCmdParamError
 *		Common subroutine exit stub to handle Command Parameter Error for Command Handlers
 *		DO NOT CALL THIS STUB DIRECTLY! It Assumes that the return address is in the stack.
 *
 */
__dbg__procCmdParamError:
	_dbg_outputMsgStatusErrCode MSG_UNKNOWNPARAM
	bl		dbg__putDebugMsg				/* Send error response to the GDB server */
	ldmfd	sp!, {pc}


/* __dbg__procBreakpointAddrError
 *      Common subroutine exit stub to handle Breakpoint Address Error for Breakpoint Insert/Remove Handlers
 *      DO NOT CALL THIS STUB DIRECTLY! It Assumes that the return address is in the stack.
 *
 */
__dbg__procBreakpointAddrError:
    _dbg_outputMsgStatusErrCode MSG_UNKNOWNBRKPT
    bl      dbg__putDebugMsg                /* Send error response to the GDB server */
    ldmfd   sp!, {pc}



/* _dbg__cmd_GetOneReg
 *		Get One Register Value Command Handler
 *		Valid command parameter x is from '0' to 'F' for User Mode Registers R0-R15
 *		                             CPSR register is '!'
 *		On entry:
 *			r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              x
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 *
 */
_dbg__cmd_GetOneReg:
	stmfd	sp!, {lr}
	bl      __dbg__cmdParamLen
	teq		r1, #CMD_REG_GETONE_PARAMLEN	/* Check for correct length */
	bne		__dbg__procCmdParamError		/* Unexpected input, report error */
	ldrb    r0, [r0]                        /* Load Register index parameter */
	teq		r0, #MSGBUF_CPSRREG				/* Check for CPSR register indicator */
	moveq	r0, #DBGSTACK_USERCPSR_OFFSET	/* Put offset from User Registers (-1) into index, so that after adjustment it points to CPSR slot */
	beq		_dbg__proc_getRegister			/* Handle User CPSR */
	bl		char2hex						/* Convert to Hex value (assume input is valid) */
	cmp		r0, #NIBBLE0					/* sanity check, (though it is not foolproof as input char in 0x0-0xF (ctrl-chars) will pass through) */
	bhi		__dbg__procCmdParamError		/* Non-hex char, report error */

_dbg__proc_getRegister:
	mov		r3, r0							/* Keep register index safe */
	_dbg_outputMsgValidResponse				/* R0: address of output message buffer data pointer (after response prefix) */
	mov		r1, r3							/* Move register index value to R1 */
	bl		_dbg_outputOneRegValue			/* update output buffer */
	_asciiz r0, r1
	bl		dbg__putDebugMsg				/* Send response to the GDB server */
	ldmfd	sp!, {pc}

/* _dbg_outputOneRegValue
 *		Given Register Index (-1: CPSR, 0-F: R0-R15), output hex char to buffer
 *		On entry:
 *          r0: output message buffer pointer
 *			r1: register index (-1, 0-F)
 *		On exit:
 *			r0: updated (points to next character slot at end of Output Buffer)
 *			r1: original output message buffer pointer
 *			r2: destroyed
 */
_dbg_outputOneRegValue:
	stmfd	sp!, {lr}
	add		r2, r1, #DBGSTACK_USERREG_INDEX	/* Convert register index to Debug Stack index */
	_getdbgregisterfromindex r2, r1			/* Retrieve Register contents into R1 */
	bl		word2ascii						/* Convert and put hex chars into Output Message Buffer */
	ldmfd	sp!, {pc}

/* _dbg__cmd_GetAllRegs
 *		Get All Register Values Command Handler
 *		Output Buffer returns register values in the order: User CPSR, R0, R1, R2, ..., R15
 *		On entry:
 *			r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              <NULL> (no parameters)
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 */
_dbg__cmd_GetAllRegs:
	stmfd	sp!, {lr}
    bl      __dbg__cmdParamLen
    teq     r1, #CMD_REG_GETALL_PARAMLEN    /* Check for correct length */
	bne		__dbg__procCmdParamError		/* Unexpected input, report error */

	_dbg_outputMsgValidResponse				/* Setup R1 with address of output message buffer data pointer (after response prefix) */
	mov		r3, #DBGSTACK_USERCPSR_OFFSET	/* Output User CPSR Value first */
1:  mov		r1, r3
	bl		_dbg_outputOneRegValue			/* update output buffer */
	add		r3, r3, #1						/* increment index */
	cmp		r3, #0xF
	ble		1b								/* process all the registers */

    _asciiz r0, r1
	bl		dbg__putDebugMsg				/* Send response to the GDB server */
	ldmfd	sp!, {pc}

/* _dbg__cmd_SetOneReg
 *      Set One Register Value Command Handler
 *      Valid command parameter x is from '0' to 'F' for User Mode Registers R0-R15
 *                                   CPSR register is '!'
 *      On entry:
 *          r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              x=rrrr
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 *
 */

_dbg__cmd_SetOneReg:
    stmfd   sp!, {lr}
    bl      __dbg__cmdParamLen
    teq     r1, #CMD_REG_SETONE_PARAMLEN    /* Check for correct length */
    bne     __dbg__procCmdParamError        /* Unexpected input, report error */
    mov     r3, r0                          /* Keep parameter buffer address in R3 */
    ldrb    r1, [r3], #1                    /* Load Register index parameter */
    _check_msgassignment r3
    bne     __dbg__procCmdParamError        /* Can't find '=' */
    mov     r0, r1                          /* Move register index to R0 for subsequent processing */
    teq     r0, #MSGBUF_CPSRREG             /* Check for CPSR register indicator */
    moveq   r0, #DBGSTACK_USERCPSR_OFFSET   /* Put offset from User Registers (-1) into index, so that after adjustment it points to CPSR slot */
    beq     _dbg__proc_setRegister          /* Handle User CPSR */
    bl      char2hex                        /* Convert to Hex value (assume input is valid) */
    cmp     r0, #NIBBLE0                    /* sanity check, (though it is not foolproof as input char in 0x0-0xF (ctrl-chars) will pass through) */
    bhi     __dbg__procCmdParamError        /* Non-hex char, report error */

_dbg__proc_setRegister:
    add     r2, r0, #DBGSTACK_USERREG_INDEX /* Convert register index to Debug Stack index, keep in R2 */
    mov     r0, r3                          /* Retrieve parameter buffer pointer */
    bl      ascii2word
    _setdbgregisterfromindex r2, r0, r3     /* Set Register contents in R0, using index in R2, and scratch register R3 */
    b       __dbg__procCmdOk

/* _dbg__cmd_SetAllReg
 *      Set All Register Values Command Handler
 *      On entry:
 *          r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              rrrrRRRRrrrr... (17 registers)
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 *
 */
_dbg__cmd_SetAllRegs:
/* FIXME: Assumes that the registers are in the sequence CPSR, R0, R1, ... R15 -- May not be GDB ordering */
    stmfd   sp!, {lr}
    bl      __dbg__cmdParamLen              /* R0: pointer to parameters in buffer */
    teq     r1, #CMD_REG_SETALL_PARAMLEN    /* Check for correct length */
    bne     __dbg__procCmdParamError        /* Unexpected input, report error */
    mov     r2, #DBGSTACK_USERCPSR_INDEX    /* R2: register index, starting with CPSR */
1:  bl      ascii2word                      /* R0: value, R1: pointer to next char in buffer */
    _setdbgregisterfromindex r2, r0, r3     /* Set Register contents in R0, using index in R2, and scratch register R3 */
    add     r2, r2, #1                      /* increment index */
    ldrb    r0, [r1]
    teq     r0, #0                          /* Look for ASCIIZ character to terminate loop */
    mov     r0, r1                          /* setup R0 for next ascii2word call */
    bne     1b                              /* continue only if ASCIIZ not found */
    b       __dbg__procCmdOk

/* _dbg__nop
 *		NOP Command Handler (placeholder)
 *		On entry:
 *			r0: parameter buffer (contents after '$' and '<cmdchar>')
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 */
_dbg__nop:
	stmfd	sp!, {lr}
	_dbg_outputMsgStatusErrCode MSG_ERRIMPL    /* Stub, not implemented yet */
	bl		dbg__putDebugMsg				   /* Send error response to the GDB server */
	ldmfd	sp!, {pc}



/* _dbg__proc_brkpt_params
 *      Process Breakpoint Parameters
 *      On entry:
 *          r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              t,AA..AA,k
 *      On exit:
 *          r0: non-zero = breakpoint address; 0 = parameter error
 *          r1: destroyed
 *          r2: destroyed
 *          r3: destroyed
 */
_dbg__proc_brkpt_params:
    /* FIXME: Add support for watchpoints */
    stmfd   sp!, {lr}
    mov     r3, r0                          /* Keep parameter buffer address in R3 */
    ldrb    r0, [r3], #1                    /* get breakpoint type t */
    bl      char2hex
    cmp     r0, #CMD_BKPT_TYPE_BREAK_MEMORY
    bne     _dbg__proc_brkpt_params_error   /* We only support memory breakpoints for now */
    _check_msgseparator r3
    bne     _dbg__proc_brkpt_params_error   /* Something wrong with the parameters */
    mov     r0, r3                          /* Check Address */
    bl      ascii2word                      /* R0: value, R1: pointer to next char slot */
    mov     r3, r0                          /* Keep breakpoint address in R3 */
    _check_msgseparator r1
    bne     _dbg__proc_brkpt_params_error   /* Something wrong with the parameters */
    ldrb    r0, [r1], #1                    /* get breakpoint kind k */
    bl      char2hex
    cmp     r0, #CMD_BKPT_KIND_THUMB
    orreq   r3, r3, #1                      /* Mark Thumb breakpoints */
    beq     _exit_dbg__proc_brkpt_params
    cmp     r0, #CMD_BKPT_KIND_ARM
    beq     _exit_dbg__proc_brkpt_params    /* ARM breakpoint */

_dbg__proc_brkpt_params_error:
    mov     r3, #0                          /* Unrecognized breakpoint type */
_exit_dbg__proc_brkpt_params:
    mov     r0, r3                          /* return breakpoint address */
    ldmfd   sp!, {pc}

/* _dbg__cmd_insert_breakpoint
 *		Add Breakpoint
 *      On entry:
 *          r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              t,AA..AA,k
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 */
_dbg__cmd_insert_breakpoint:
    stmfd   sp!, {lr}
    bl      __dbg__cmdParamLen
    teq     r1, #CMD_BKPT_INSERT_PARAMLEN   /* Check for correct length */
    bne     __dbg__procCmdParamError        /* Unexpected input, report error */
    bl      _dbg__proc_brkpt_params         /* R0: Breakpoint Address */
    teq     r0, #0
    beq     __dbg__procBreakpointAddrError  /* Thumb2 instructions, or unknown kind */
    mov     r3, r0                          /* Keep breakpoint address in R3 */
    mov     r0, #0                          /* Empty Breakpoint entry */
    bl      _dbg_find_breakpoint_slot       /* Look for an available breakpoint slot, return index in R0 */
    cmp     r0, #CMD_BKPT_NOTFOUND
    beq     __dbg__procBreakpointAddrError  /* No empty slot! */
    mov     r1, r3                          /* Move breakpoint address to R1 */
	bl     _dbg__install_one_breakpoint		/*	r0: index, r1: instruction address */
    b       __dbg__procCmdOk

/* _dbg__cmd_remove_breakpoint
 *		Remove Breakpoint
 *		On entry:
 *          r0: parameter buffer pointer (contents after '$' and '<cmdchar>')
 *              t,AA..AA,k
 *      On exit:
 *          r0, r1, r2, r3: destroyed
 */
_dbg__cmd_remove_breakpoint:
    stmfd   sp!, {lr}
    bl      __dbg__cmdParamLen
    teq     r1, #CMD_BKPT_REMOVE_PARAMLEN  /* Check for correct length */
    bne     __dbg__procCmdParamError       /* Unexpected input, report error */
    bl      _dbg__proc_brkpt_params        /* R0: Breakpoint Address */
    teq     r0, #0
    beq     __dbg__procBreakpointAddrError /* Thumb2 instructions, or unknown kind */
    bl      _dbg_find_breakpoint_slot      /* Look for matching breakpoint slot, return index in R0 */
    cmp     r0, #CMD_BKPT_NOTFOUND
    beq     __dbg__procBreakpointAddrError /* Specified Breakpoint not found! */
	_index2bkptindex_addr	r0, r1		   /* Calculate Breakpoint Entry Address */
	mov     r0, r1                         /* Move it to R0 for subroutine call */
	bl	    _dbg__clear_one_breakpoint     /* R0: address of breakpoint to clear */
    b       __dbg__procCmdOk


/* _dbg__cmd_run
 *		Continue execution of program
 */
_dbg__cmd_run:
	bl	_dbg__activate_breakpoints
	b	__dbg__resume_execution

/* _dbg__cmd_step
 *		Single Step execution of program
 */
_dbg__cmd_step:
	bl	_dbg_next_instruction_addr					/* next instruction address returned in r1 */
	bl	_dbg__install_singlestep					/* Setup Single Step */
	bl	_dbg__activate_singlestep
	b	__dbg__resume_execution

/* _dbg__cmd_cont
 *		Continue execution of program.
 *		If this is a Normal Breakpoint, then we need to install an Autobreakpoint at next instruction address
 *			and resume from current (Breakpoint) exception address
 *		Else (it is a Manual Breakpoint)
 *			We need to resume from the next instruction address
 */
_dbg__cmd_cont:
/* FIXME: What happens if we call this when we did not stop at a Breakpoint previously? */
	_dbg_getstate	r0
	ldr	r1, =DBG_MANUAL_BKPT_ARM
	teq	r0, r1
	beq	__dbg_is_manual_breakpoint

	bl	_dbg_next_instruction_addr					/* next instruction address returned in r1 */
	bl	_dbg__install_singlestep					/* Setup Single Step, next instruction address returned in r1 */
	_dbg_getcurrbkpt_index r0							/* load current breakpoint index in memory */
	bl	_dbg__activate_autobreakpoint				/* pass next instruction address in r1 */
	b	__dbg__resume_execution

__dbg_is_manual_breakpoint:
	bl	_dbg_next_instruction_addr					/* Skip Manual Breakpoint Instruction(s) */
	bl	_dbg__activate_breakpoints
	b	__dbg__resume_execution

/****************************************************************************
// Selected Routines from the eCos arm_stub.c related to next instruction address
// determination in ARM processors.

//========================================================================
//
//      arm_stub.c
//
//      Helper functions for stub, generic to all ARM processors
//
//========================================================================
// ####ECOSGPLCOPYRIGHTBEGIN####
// -------------------------------------------
// This file is part of eCos, the Embedded Configurable Operating System.
// Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
//
// eCos is free software; you can redistribute it and/or modify it under
// the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 or (at your option) any later
// version.
//
// eCos is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License
// along with eCos; if not, write to the Free Software Foundation, Inc.,
// 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
//
// As a special exception, if other files instantiate templates or use
// macros or inline functions from this file, or you compile this file
// and link it with other works to produce a work based on this file,
// this file does not by itself cause the resulting work to be covered by
// the GNU General Public License. However the source code for this file
// must still be made available in accordance with section (3) of the GNU
// General Public License v2.
//
// This exception does not invalidate any other reasons why a work based
// on this file might be covered by the GNU General Public License.
// -------------------------------------------
// ####ECOSGPLCOPYRIGHTEND####
//========================================================================
//#####DESCRIPTIONBEGIN####
//
// Author(s):     Red Hat, gthomas
// Contributors:  Red Hat, gthomas, jskov
// Date:          1998-11-26
// Purpose:
// Description:   Helper functions for stub, generic to all ARM processors
// Usage:
//
//####DESCRIPTIONEND####
//
//========================================================================


static int
ins_will_execute(unsigned long ins)
{
    unsigned long psr = get_register(PS);  // condition codes
    int res = 0;
    switch ((ins & 0xF0000000) >> 28) {
    case 0x0: // EQ
        res = (psr & PS_Z) != 0;
        break;
    case 0x1: // NE
        res = (psr & PS_Z) == 0;
        break;
    case 0x2: // CS
        res = (psr & PS_C) != 0;
        break;
    case 0x3: // CC
        res = (psr & PS_C) == 0;
        break;
    case 0x4: // MI
        res = (psr & PS_N) != 0;
        break;
    case 0x5: // PL
        res = (psr & PS_N) == 0;
        break;
    case 0x6: // VS
        res = (psr & PS_V) != 0;
        break;
    case 0x7: // VC
        res = (psr & PS_V) == 0;
        break;
    case 0x8: // HI
        res = ((psr & PS_C) != 0) && ((psr & PS_Z) == 0);
        break;
    case 0x9: // LS
        res = ((psr & PS_C) == 0) || ((psr & PS_Z) != 0);
        break;
    case 0xA: // GE
        res = ((psr & (PS_N|PS_V)) == (PS_N|PS_V)) ||
            ((psr & (PS_N|PS_V)) == 0);
        break;
    case 0xB: // LT
        res = ((psr & (PS_N|PS_V)) == PS_N) ||
            ((psr & (PS_N|PS_V)) == PS_V);
        break;
    case 0xC: // GT
        res = ((psr & (PS_N|PS_V)) == (PS_N|PS_V)) ||
            ((psr & (PS_N|PS_V)) == 0);
        res = ((psr & PS_Z) == 0) && res;
        break;
    case 0xD: // LE
        res = ((psr & (PS_N|PS_V)) == PS_N) ||
            ((psr & (PS_N|PS_V)) == PS_V);
        res = ((psr & PS_Z) == PS_Z) || res;
        break;
    case 0xE: // AL
        res = TRUE;
        break;
    case 0xF: // NV
        if (((ins & 0x0E000000) >> 24) == 0xA)
	    res = TRUE;
	else
	    res = FALSE;
        break;
    }
    return res;
}

static unsigned long
RmShifted(int shift)
{
    unsigned long Rm = get_register(shift & 0x00F);
    int shift_count;
    if ((shift & 0x010) == 0) {
        shift_count = (shift & 0xF80) >> 7;
    } else {
        shift_count = get_register((shift & 0xF00) >> 8);
    }
    switch ((shift & 0x060) >> 5) {
    case 0x0: // Logical left
        Rm <<= shift_count;
        break;
    case 0x1: // Logical right
        Rm >>= shift_count;
        break;
    case 0x2: // Arithmetic right
        Rm = (unsigned long)((long)Rm >> shift_count);
        break;
    case 0x3: // Rotate right
        if (shift_count == 0) {
            // Special case, RORx
            Rm >>= 1;
            if (get_register(PS) & PS_C) Rm |= 0x80000000;
        } else {
            Rm = (Rm >> shift_count) | (Rm << (32-shift_count));
        }
        break;
    }
    return Rm;
}

// Decide the next instruction to be executed for a given instruction
static unsigned long *
target_ins(unsigned long *pc, unsigned long ins)
{
    unsigned long new_pc, offset, op2;
    unsigned long Rn;
    int i, reg_count, c;

    switch ((ins & 0x0C000000) >> 26) {
    case 0x0:
        // BX or BLX
        if ((ins & 0x0FFFFFD0) == 0x012FFF10) {
            new_pc = (unsigned long)get_register(ins & 0x0000000F);
            return ((unsigned long *)new_pc);
        }
        // Data processing
        new_pc = (unsigned long)(pc+1);
        if ((ins & 0x0000F000) == 0x0000F000) {
            // Destination register is PC
            if ((ins & 0x0FBF0000) != 0x010F0000) {
                Rn = (unsigned long)get_register((ins & 0x000F0000) >> 16);
                if ((ins & 0x000F0000) == 0x000F0000) Rn += 8;  // PC prefetch!
                if ((ins & 0x02000000) == 0) {
                    op2 = RmShifted(ins & 0x00000FFF);
                } else {
                    op2 = ins & 0x000000FF;
                    i = (ins & 0x00000F00) >> 8;  // Rotate count
                    op2 = (op2 >> (i*2)) | (op2 << (32-(i*2)));
                }
                switch ((ins & 0x01E00000) >> 21) {
                case 0x0: // AND
                    new_pc = Rn & op2;
                    break;
                case 0x1: // EOR
                    new_pc = Rn ^ op2;
                    break;
                case 0x2: // SUB
                    new_pc = Rn - op2;
                    break;
                case 0x3: // RSB
                    new_pc = op2 - Rn;
                    break;
                case 0x4: // ADD
                    new_pc = Rn + op2;
                    break;
                case 0x5: // ADC
                    c = (get_register(PS) & PS_C) != 0;
                    new_pc = Rn + op2 + c;
                    break;
                case 0x6: // SBC
                    c = (get_register(PS) & PS_C) != 0;
                    new_pc = Rn - op2 + c - 1;
                    break;
                case 0x7: // RSC
                    c = (get_register(PS) & PS_C) != 0;
                    new_pc = op2 - Rn +c - 1;
                    break;
                case 0x8: // TST
                case 0x9: // TEQ
                case 0xA: // CMP
                case 0xB: // CMN
                    break; // PC doesn't change
                case 0xC: // ORR
                    new_pc = Rn | op2;
                    break;
                case 0xD: // MOV
                    new_pc = op2;
                    break;
                case 0xE: // BIC
                    new_pc = Rn & ~op2;
                    break;
                case 0xF: // MVN
                    new_pc = ~op2;
                    break;
                }
            }
        }
        return ((unsigned long *)new_pc);
    case 0x1:
        if ((ins & 0x02000010) == 0x02000010) {
            // Undefined!
            return (pc+1);
        } else {
            if ((ins & 0x00100000) == 0) {
                // STR
                return (pc+1);
            } else {
                // LDR
                if ((ins & 0x0000F000) != 0x0000F000) {
                    // Rd not PC
                    return (pc+1);
                } else {
                    Rn = (unsigned long)get_register((ins & 0x000F0000) >> 16);
                    if ((ins & 0x000F0000) == 0x000F0000) Rn += 8;  // PC prefetch!
                    if (ins & 0x01000000) {
                        // Add/subtract offset before
                        if ((ins & 0x02000000) == 0) {
                            // Immediate offset
                            if (ins & 0x00800000) {
                                // Add offset
                                Rn += (ins & 0x00000FFF);
                            } else {
                                // Subtract offset
                                Rn -= (ins & 0x00000FFF);
                            }
                        } else {
                            // Offset is in a register
                            if (ins & 0x00800000) {
                                // Add offset
                                Rn += RmShifted(ins & 0x00000FFF);
                            } else {
                                // Subtract offset
                                Rn -= RmShifted(ins & 0x00000FFF);
                            }
                        }
                    }
                    return ((unsigned long *)*(unsigned long *)Rn);
                }
            }
        }
        return (pc+1);
    case 0x2:  // Branch, LDM/STM
        if ((ins & 0x02000000) == 0) {
            // LDM/STM
            if ((ins & 0x00100000) == 0) {
                // STM
                return (pc+1);
            } else {
                // LDM
                if ((ins & 0x00008000) == 0) {
                    // PC not in list
                    return (pc+1);
                } else {
                    Rn = (unsigned long)get_register((ins & 0x000F0000) >> 16);
                    if ((ins & 0x000F0000) == 0x000F0000) Rn += 8;  // PC prefetch!
                    offset = ins & 0x0000FFFF;
                    reg_count = 0;
                    for (i = 0;  i < 15;  i++) {
                        if (offset & (1<<i)) reg_count++;
                    }
                    if (ins & 0x00800000) {
                        // Add offset
                        Rn += reg_count*4;
                    } else {
                        // Subtract offset
                        Rn -= 4;
                    }
                    return ((unsigned long *)*(unsigned long *)Rn);
                }
            }
        } else {
            // Branch
            if (ins_will_execute(ins)) {
                offset = (ins & 0x00FFFFFF) << 2;
                if (ins & 0x00800000) offset |= 0xFC000000;  // sign extend
                new_pc = (unsigned long)(pc+2) + offset;
		// If its BLX, make new_pc a thumb address.
		if ((ins & 0xFE000000) == 0xFA000000) {
		    if ((ins & 0x01000000) == 0x01000000)
			new_pc |= 2;
		    new_pc = MAKE_THUMB_ADDR(new_pc);
		}
                return ((unsigned long *)new_pc);
            } else {
                // Falls through
                return (pc+1);
            }
        }
    case 0x3:  // Coprocessor & SWI
        if (((ins & 0x03000000) == 0x03000000) && ins_will_execute(ins)) {
           // SWI
           return (unsigned long *)(CYGNUM_HAL_VECTOR_SOFTWARE_INTERRUPT * 4);
        } else {
           return (pc+1);
        }
    default:
        // Never reached - but fixes compiler warning.
        return 0;
    }
}

// FIXME: target_ins also needs to check for CPSR/THUMB being set and
//        set the thumb bit accordingly.

static unsigned long
target_thumb_ins(unsigned long pc, unsigned short ins)
{
    unsigned long new_pc = MAKE_THUMB_ADDR(pc+2); // default is fall-through
                                        // to next thumb instruction
    unsigned long offset, arm_ins, sp;
    int i;

    switch ((ins & 0xf000) >> 12) {
    case 0x4:
        // Check for BX or BLX
        if ((ins & 0xff07) == 0x4700)
            new_pc = (unsigned long)get_register((ins & 0x00078) >> 3);
        break;
    case 0xb:
        // push/pop
        // Look for "pop {...,pc}"
        if ((ins & 0xf00) == 0xd00) {
            // find PC
            sp = (unsigned long)get_register(SP);

            for (offset = i = 0; i < 8; i++)
              if (ins & (1 << i))
                  offset += 4;

            new_pc = *(cyg_uint32 *)(sp + offset);

            if (!v5T_semantics())
                new_pc = MAKE_THUMB_ADDR(new_pc);
        }
        break;
    case 0xd:
        // Bcc | SWI
        // Use ARM function to check condition
        arm_ins = ((unsigned long)(ins & 0x0f00)) << 20;
        if ((arm_ins & 0xF0000000) == 0xF0000000) {
            // SWI
            new_pc = CYGNUM_HAL_VECTOR_SOFTWARE_INTERRUPT * 4;
        } else if (ins_will_execute(arm_ins)) {
            offset = (ins & 0x00FF) << 1;
            if (ins & 0x0080) offset |= 0xFFFFFE00;  // sign extend
            new_pc = MAKE_THUMB_ADDR((unsigned long)(pc+4) + offset);
        }
        break;
    case 0xe:
        // check for B
        if ((ins & 0x0800) == 0) {
            offset = (ins & 0x07FF) << 1;
            if (ins & 0x0400) offset |= 0xFFFFF800;  // sign extend
            new_pc = MAKE_THUMB_ADDR((unsigned long)(pc+4) + offset);
        }
        break;
    case 0xf:
        // BL/BLX (4byte instruction!)
        // First instruction (bit 11 == 0) holds top-part of offset
        if ((ins & 0x0800) == 0) {
	    offset = (ins & 0x07FF) << 12;
	    if (ins & 0x0400) offset |= 0xFF800000;  // sign extend
	    // Get second instruction
	    // Second instruction (bit 11 == 1) holds bottom-part of offset
	    ins = *(unsigned short*)(pc+2);
	    // Check for BL/BLX
	    if ((ins & 0xE800) == 0xE800) {
		offset |= (ins & 0x07ff) << 1;
		new_pc = (unsigned long)(pc+4) + offset;
		// If its BLX, force a full word alignment
		// Otherwise, its a thumb address.
		if (!(ins & 0x1000))
		    new_pc &= ~3;
		else
		    new_pc = MAKE_THUMB_ADDR(new_pc);
	    }
	}
        break;
    }

    return new_pc;
}

void __single_step (void)
{
    unsigned long pc = get_register(PC);
    unsigned long cpsr = get_register(PS);

    // Calculate address of next instruction to be executed
    if (cpsr & CPSR_THUMB_ENABLE) {
        // thumb
        ss_saved_pc = target_thumb_ins(pc, *(unsigned short*)pc);
    } else {
        // ARM
        unsigned long curins = *(unsigned long*)pc;
        if (ins_will_execute(curins)) {
            // Decode instruction to decide what the next PC will be
            ss_saved_pc = (unsigned long) target_ins((unsigned long*)pc,
                                                     curins);
        } else {
            // The current instruction will not execute (the conditions
            // don't hold)
            ss_saved_pc = pc+4;
        }
    }

    // Set breakpoint according to type
    if (IS_THUMB_ADDR(ss_saved_pc)) {
        // Thumb instruction
        unsigned long t_pc = UNMAKE_THUMB_ADDR(ss_saved_pc);
        ss_saved_thumb_instr = *(unsigned short*)t_pc;
        *(unsigned short*)t_pc = HAL_BREAKINST_THUMB;
    } else {
        // ARM instruction
        ss_saved_instr = *(unsigned long*)ss_saved_pc;
        *(unsigned long*)ss_saved_pc = HAL_BREAKINST_ARM;
    }
}

 ****************************************************************************/


/* _dbg_next_instruction_addr
 *		Determine the address of the next instruction to execute.
 *		On exit:
 *			R1: Instruction Address (31 bits, b0 = THUMB flag)
 *
 *	Here we make use of the Debugger Stack which contains the address of the aborted instruction that will be reexecuted
 *	when we resume the program.
 *
 *	If it is a Manual Breakpoint inserted into the code, then we will need to update the aborted instruction
 *	address to skip the current aborted instruction and resume execution at the next instruction address,
 *  and the next instruction address to be returned to the calling routine is the following instruction
 *  address instead.
 *
 *	We need to check the aborted instruction type, to see if it is a branch instruction, before we can determine
 *	the next instruction address (for inserting a Breakpoint).
 */
_dbg_next_instruction_addr:
/* We assume that any BKPT instructions in the code will be Manual Breakpoints,
 * i.e., the Debugger does not leave stray Single Step / Auto / Normal breakpoints in memory
 */

	mov		r2, #DBGSTACK_USERCPSR_INDEX				/* Retrieve User CPSR */
	_getdbgregisterfromindex r2, r0						/* Retrieve Register contents into R0 */
 	and		r4, r0, #CPSR_THUMB							/* store Thumb Mode status in R4 */
 	mov		r5, r0, lsr #28								/* store CPSR condition flags in R5[3:0] */

	_dbg_getabortedinstr_addr	r2						/* Retrieve aborted instruction address */
1:	teq		r4, #0										/* Check if it is ARM or Thumb instruction */
	ldrneh	r0, [r2]
	ldrne	r1, =(BKPT16_INSTR | BKPT16_MANUAL_BKPT)	/* check for Thumb Manual Breakpoint Instruction */
	ldreq	r0, [r2]
	ldreq	r1, =(BKPT32_INSTR | BKPT32_MANUAL_BKPT)	/* check for ARM Manual Breakpoint Instruction */
	teq		r0, r1
	bne		2f											/* Not Manual breakpoint */
	teq		r4, #0										/* Check if it is ARM or Thumb instruction */
	addne	r2, r2, #2									/* Is Manual Breakpoint, Skip to next Thumb instruction */
	addeq	r2, r2, #4									/* Is Manual Breakpoint, Skip to next ARM instruction */
	_dbg_setabortedinstr_addr	r2						/* Update aborted instruction address */
	b		1b											/* To protect against a sequence of Manual Breakpoint Instructions */

/* Here, r0 contains the instruction which will be reexecuted when program resumes. We need to dissect it to see if
 * it is a branch instruction.
 * For ARM instructions, we also need to evaluate the current (breakpointed) instruction to see if it'll execute.
 * If not, then the next instruction is the instruction following the current instruction.
 */
2:
	/* Use R6 to store candidate next instruction address */
	teq		r4, #0										/* Check if it is ARM or Thumb instruction */
	beq		_next_instr_is_arm
_next_instr_is_thumb:
	add		r6, r2, #2									/* set next Thumb instruction address */
	/*_is_thumb_branch_instr	r0		*/					/* check if the current instruction is a branch instruction */
_next_instr_is_arm:
	add		r6, r2, #4									/* Is ARM, set next ARM instruction address */
@@@@@@@@@
	bx	lr

/* __dbg__resume_execution
 *		cleanup, resume execution of program.
 *		Restore User Mode Regsiters from Debugger Stack, and resume execution from aborted instruction
 */
__dbg__resume_execution:
@@@@@@
	bl	_dbg__flush_icache
	b __dbg__resume_execution

/****************************************************************************
 *
 * Instruction Decode Routines
 *
 ****************************************************************************/

/* _dbg_check_arm_condcode
 *		Check ARM conditional execution code
 *		On entry:
 *			R0: instruction to be executed
 *			R5[3:0]: CPSR condition codes
 *		On exit:
 *			R0: will_execute (boolean)
 */

_dbg_check_arm_condcode:
	stmfd	sp!, {r6,lr}							/* Use R6 as temporary will_execute variable */
	mov		r6, #TRUE
	mov		r0, r0, lsr #28							/* convert condition code to index (0-F) */
	ldr		r2, =debug_armCondCodeTable
	ldrb	r1, [r2, r0]							/* Get condition code mask */
/*
 * The following check is unnecessary as it is covered by the set/clear checking algorithm
 	teq		r1, #0
	beq		_dbg_check_arm_condcode_exit
*/
	teq		r1, #0xFF
	bne		_dbg_check_bits_set


/*
 * Complex Checks:
 *
 * will_execute = TRUE [default condition]
 * If (N == V) bit set
 *		will_execute = (N == V)
 * else
 *		will_execute = (N != V)
 *
 * If (ANDOR bit) set
 *		z_cond = ((Z XOR Z set) == 0)
 *		If (AND bit set)
 *			will_execute = will_execute && z_cond
 *		else
 *			will_execute = will_execute || z_cond
 */
_dbg_cond_complex_check:
	sub		r1, r0, #COMPLEX_CONDCODE_START			/* Convert complex condition code to new index (0-3) */
	ldr		r2, =debug_armComplexCCTable
	ldrb	r1, [r2, r1]							/* Get complex condition code bitmap */

	/* Use r2 to store N, r3 to store V */
	tst		r5, #COMPLEX_CONDCODE_NFLAG
	moveq	r2, #FALSE
	movne	r2, #TRUE								/* r2 = N flag */
	tst		r5, #COMPLEX_CONDCODE_VFLAG
	moveq	r3, #FALSE
	movne	r3, #TRUE								/* r3 = V flag */
	eor		r2, r2, r3								/* r2 = (N xor V): 0 if equal, 0xFF if not equal */
	tst		r1, #COMPLEX_CONDCODE_NEQV_MASK
	mvnne	r6, r1									/* If (N == V) bit set, will_execute (r6) = TRUE if (N == V) [r2 == 0] -> invert r2 */
	moveq	r6, r1									/* else (N == V) bit clr, will_execute (r6) = TRUE if (N != V) [r2 == 0xFF] */

	tst		r1, #COMPLEX_CONDCODE_ANDOR_MASK
	beq		_dbg_check_arm_condcode_exit			/* No additional checks needed, exit */

	/* Use r2 to store Z, r3 to store Z set */
	and		r2, r5, #COMPLEX_CONDCODE_ZFLAG			/* r2 = Z flag */
	and		r3, r1, #COMPLEX_CONDCODE_ZSET_MASK		/* r3 = Z set */
	eors	r2, r2, r3								/* r2 = (Z xor Z set): 0 if matched, non-zero if not matched */
	moveq	r2, #TRUE
	movne	r2, #FALSE								/* r2 (z_cond): TRUE if matched, FALSE if not matched */

	tst		r1, #COMPLEX_CONDCODE_AND_MASK
	andne	r6, r6, r2								/* If AND bit set, will_execute = will_execute && z_cond */
	orreq	r6, r6, r2								/* else, will_execute = will_execute || z_cond */
	b		_dbg_check_arm_condcode_exit


/*
 * Simple Checks:
 *
 * will_execute = TRUE [default condition, equivalent to 0x00 (AL) ]
 * If (SetBitMask is Non-Zero)
 *		will_execute = ((cond_code & SetBitMask) == SetBitMask)
 * If will_execute && (ClearBitMask is Non-Zero)
 *		will_execute = will_execute && ((cond_code | ~ClearBitMask) == ~ClearBitMask)
 */

_dbg_check_bits_set:
	movs	r0, r1, lsr #4							/* R0: bits set */
	beq		_dbg_check_bits_clear
	and		r2, r5, r0								/* Check bits set IF bitmask non-zero */
	teq		r2, r0									/* ((cond_code & SetBitMask) == SetBitMask)? */
	movne	r6, #FALSE								/* No, so will_execute = FALSE */
	bne		_dbg_check_arm_condcode_exit

_dbg_check_bits_clear:
	ands	r1, r1, #NIBBLE0						/* R1: bits clear */
	beq		_dbg_check_arm_condcode_exit
	mvn		r1, r1									/* Invert Bitmask */
	orr		r2, r5, r1								/* Check bits clear IF bitmask non-zero */
	teq		r2, r1									/* ((cond_code | ~ClearBitMask) == ~ClearBitMask)? */
	movne	r6, #FALSE								/* No, so will_execute = FALSE */
	bne		_dbg_check_arm_condcode_exit


_dbg_check_arm_condcode_exit:
	mov		r0, r6									/* Update return value */
	ldmfd	sp!, {r6, pc}


_arm_data_instr_handler:	/* Data Processing instr with Rd = R15 */
_arm_bx_blx_handler:		/* BX or BLX */
_arm_ldr_pc_handler:		/* LDR with Rd = PC */
_arm_ldm_pc_handler:		/* LDM {pc} */
_arm_b_bl_handler:		/* B or BL. Note v4t does not have BLX instr */
_arm_coproc_swi_handler:	/* Coprocessor instr or SWI */
	bx	lr

_thumb_bx_blx_handler:				/* BX or BLX. Note: b7 (H1) is not matched in the mask */
_thumb_poppc_handler:				/* PUSH/POP, specifically POP {Rlist,PC} */
_thumb_bcond_swi_handler:			/* B<cond> or SWI */
_thumb_b_handler:					/* B */
_thumb_long_b_handler:				/* Long BL or BLX (4 bytes) Note: b11 (H) indicates 1st or 2nd instr */
	bx	lr


/****************************************************************************
 *
 * Breakpoint Manipulation Routines
 *
 ****************************************************************************/
/* _dbg_find_breakpoint_slot
 *      Find the matching Breakpoint Slot.
 *      This is both used to find empty slots (pass R0=0x0000) or
 *      occupied slots (pass R0=<brkpt addr>)
 *
 *  On Entry:
 *      R0: Breakpoint Address
 *  On Exit:
 *      R0: Matching Index (-1: not found)
 *
 *  NOTE: This routine performs exact match, i.e., breakpoint address MUST be configured
 *        for ARM or Thumb (bit 0 clear/set) as appropriate
 */

_dbg_find_breakpoint_slot:
    stmfd   sp!, {r1,r2,r3, lr}
    mov     r1, #1                      /* Only consider Breakpoints 1-7 */
    ldr     r3, =__breakpoints_num__
1:
    _index2bkptindex_addr   r1, r2      /* Calculate Breakpoint Entry Address */
    ldr     r2, [r2]                    /* Get actual breakpoint entry (instruction address) */
    cmp     r0, r2
    beq     _found_breakpoint_slot
    add     r1, r1, #1                  /* no match, check next */
    cmp     r1, r3
    blo     1b                          /* continue checking only if we don't exceed __breakpoints_num__ */

_notfound_breakpoint_slot:
    mov     r1, #CMD_BKPT_NOTFOUND
_found_breakpoint_slot:
    mov     r0, r1                      /* Return value in R0 */
    ldmfd   sp!, {r1,r2,r3, pc}

/* _dbg__clear_singlestep
 *		Clear the Single Step Breakpoint
 */
_dbg__clear_singlestep:
	ldr		r0, =__breakpoints_start__	/* Single Step Breakpoint is at the beginning of the Breakpoint State Struct */
/*	b		_dbg__clear_one_breakpoint */

/* _dbg__clear_one_breakpoint
 *		On entry, R0 contains the Breakpoint State slot address to be cleared
 *
 */
_dbg__clear_one_breakpoint:
	mov		r1, #0
	mov		r2, #0
	stmea	r0!, {r1, r2}		/* clear Breakpoint state */
	bx		lr

/* _dbg__clear_breakpoints
 *		Routine iterates through the array of breakpoints (incl single step breakpoint) and clears the breakpoint
 */
_dbg__clear_breakpoints:
	stmfd	sp!, {lr}
	ldr		r0, =__breakpoints_start__	/* Single Step Breakpoint is at the beginning of the Breakpoint State Struct */
	ldr		r3, =__breakpoints_end__		/* start from top of the table */
3:	bl		_dbg__clear_one_breakpoint
	cmp		r0, r3
	blo		3b
	ldmfd	sp!, {pc}

/* _dbg__install_singlestep
 *		Install the Single Step Breakpoint
 *		On entry:
 *			R1: Instruction Address (31 bits, b0 = THUMB flag)
 */
_dbg__install_singlestep:
	mov		r0, #0
/*	b		_dbg__install_one_breakpoint */

/* _dbg__install_one_breakpoint
 *		Install breakpoint entry into Breakpoint State Table
 *		On entry:
 *			R0: Breakpoint index (assumed valid)
 *			R1: Instruction Address (31 bits, b0 = THUMB flag)
 *
 *		On exit:
 *			R2: Breakpoint Instruction
 *			R3: Breakpoint Entry address
 */
_dbg__install_one_breakpoint:
/* Check for Thumb bit */
	tst		r1, #BKPT_STATE_THUMB_FLAG	/* 1: Thumb instruction */
/* Assume that the address entry is valid, otherwise we should sanitize it (mask out b1) */
	ldreq	r2, [r1]					/* if 0: load ARM instruction from address location */
	ldrneh	r2, [r1]					/* else load Thumb instruction */
	_index2bkptindex_addr	r0, r3		/* Calculate Breakpoint Entry Address */
	stm		r3, {r1, r2}
	bx		lr


/* _dbg__restore_singlestep
 *		Restores the contents of the single step breakpoint to memory
 */
_dbg__restore_singlestep:
	mov		r0, #0						/* single step breakpoint index */
	_index2bkptindex_addr	r0, r1		/* Calculate Single Step Breakpoint Entry Address */
	ldm		r1, {r1, r2}				/* r1: Breakpoint Address, r2: Breakpoint Instruction */
	teq		r1, #0
	bxeq	lr							/* Exit if not active */
/*	b		_dbg__restore_one_breakpoint */

/* _dbg__restore_one_breakpoint
 *		Restores the contents to memory for one breakpoint
 *		On entry:
 *			R0: Breakpoint index (assumed valid) [not used -- can be used for validating BKPT]
 *			R1: Breakpoint Address (assumed valid)
 *			R2: Breakpoint Instruction (assumed valid)
 */
_dbg__restore_one_breakpoint:
/* Check for Thumb bit */
	tst		r1, #BKPT_STATE_THUMB_FLAG	/* 1: Thumb instruction */
/* Assume that the address entry is valid, otherwise we should sanitize it (mask out b1) */
	streq	r2, [r1]					/* if 0: restore ARM instruction to address location */
	bicne	r1, #BKPT_STATE_THUMB_FLAG	/* else, clear Thumb Flag */
	strneh	r2, [r1]					/* store Thumb instruction */
	bx		lr

/* _dbg__restore_breakpoints
 *		Routine iterates through the array of breakpoints (incl single step breakpoint) and restores the contents to memory
 *		Only Active breakpoints (i.e., Non-zero Address) are processed.
 */
_dbg__restore_breakpoints:
	stmfd	sp!, {lr}
	ldr		r5, =_dbg__restore_one_breakpoint
	b		__dbg__iterate_breakpoint_array

/* _dbg__activate_singlestep
 *		Activate the single step breakpoint to memory
 */
_dbg__activate_singlestep:
	mov		r0, #0						/* single step breakpoint index */
	_index2bkptindex_addr	r0, r1		/* Calculate Single Step Breakpoint Entry Address */
	ldm		r1, {r1, r2}				/* r1: Breakpoint Address, r2: Breakpoint Instruction */
	teq		r1, #0
	bxeq	lr							/* Exit if not active */
/*	b		_dbg__activate_one_breakpoint */

/* _dbg__activate_one_breakpoint
 *		Activate one breakpoint to memory
 *		On entry:
 *			R0: Breakpoint index (assumed valid)
 *			R1: Breakpoint Address (assumed valid)
 *			R2: Breakpoint Instruction (assumed valid)
 */
_dbg__activate_one_breakpoint:
/* Check for Thumb bit */
	tst		r1, #BKPT_STATE_THUMB_FLAG	/* 1: Thumb instruction */
	bne		_nx_is_thumb_bp
_nx_is_arm_bp:
/* Assume that the address entry is valid, otherwise we should sanitize it (mask out b1) */
	ldr		r3, [r1]					/* if 0: load ARM instruction from address location */
	teq		r2, r3							/* check that the two instructions are identical */
	bne		_dbg__breakpoint_invalid_arm
	ldr		r2, =BKPT32_INSTR				/* ARM BKPT instruction */
	and		r2, r2, r0						/* Merge Breakpoint index */
	str		r2, [r1]						/* Store it into memory location */
_dbg__breakpoint_invalid_arm:
	bx		lr
_nx_is_thumb_bp:
	bic		r1, #BKPT_STATE_THUMB_FLAG	/* else, clear Thumb Flag */
	ldrh	r3, [r1]						/* load Thumb instruction from address location */
	teq		r2, r3							/* check that the two instructions are identical */
	bne		_dbg__breakpoint_invalid_thumb
	ldr		r2, =BKPT16_INSTR				/* Thumb BKPT instruction */
	and		r2, r2, r0						/* Merge Breakpoint index */
	strh	r2, [r1]						/* Store it into memory location */
_dbg__breakpoint_invalid_thumb:
	bx		lr

/* _dbg__activate_breakpoints
 *		Routine iterates through the array of breakpoints (incl single step breakpoint) and activates them
 *		Only Active breakpoints (i.e., Non-zero Address) are processed.
 */
_dbg__activate_breakpoints:
	stmfd	sp!, {lr}
	ldr		r5, =_dbg__activate_one_breakpoint
	b		__dbg__iterate_breakpoint_array


/* __dbg__iterate_breakpoint_array
 *		Common routine iterates through the array of breakpoints (incl single step breakpoint)
 *		and executes routine given in R5, passing:
 *			R0: Breakpoint index
 *			R1: Breakpoint Address
 *			R2: Breakpoint Instruction
 *
 *		On Entry:
 *			Assumes that lr has been push to stack (routine can't be called directly)
 *
 *		Only Active breakpoints (i.e., Non-zero Address entries) are processed.
 */
__dbg__iterate_breakpoint_array:
	ldr		r4, =__breakpoints_end__		/* start from top of the table (Assume __breakpoints_end__ > __breakpoints_start__) */
	ldr		r3, =__breakpoints_start__		/* end address check */
	ldr		r0, =__breakpoints_num__		/* Number of Breakpoints (incl Single Step) (Assume Non-Zero) */
4:	sub		r0, r0, #1						/* Decrement breakpoint index in r0 */
	ldmea	r4!, {r1, r2}					/* r1: Breakpoint Address, r2: Breakpoint Instruction */
	teq		r1, #0							/* Is it active? */
	movne	lr, pc
	bxne	r5								/* active entry */
	cmp		r4, r3
	bhi		4b								/* if (pointer > start of Breakpoint Table address), get next slot */
	ldmfd	sp!, {pc}

/* _dbg__activate_autobreakpoint
 *		Activate all other breakpoints except current breakpoint, activate auto breakpoint in next instr slot
 *		On entry:
 *			R0: Current Breakpoint index (assumed valid)
 *			R1: Next Instruction address (for AUTO Breakpoint) [Not used, assume Single Step Breakpoint already has correct info]
 */
_dbg__activate_autobreakpoint:
	stmfd	sp!, {lr}
	mov		r5, r0							/* Keep Current Breakpoint Index in r5 */
	ldr		r4, =__breakpoints_end__		/* start from top of the table */
	ldr		r0, =__breakpoints_num__		/* Number of Breakpoints (incl Single Step) (Assume Non-Zero) */
4:	subs	r0, r0, #1						/* Decrement breakpoint index in r0 */
	ldmea	r4!, {r1, r2}					/* r1: Breakpoint Address, r2: Breakpoint Instruction */
	bls		5f								/* Flag set by subs instruction previously. Reached Single Step, go activate AUTO Breakpoint */
	teq		r0, r5							/* Is it the Current Breakpoint? */
	beq		4b								/* Yes, so skip */
	teq		r1, #0							/* Is it active? */
	blne	_dbg__activate_one_breakpoint	/* active entry */
	b		4b								/* Next iteration */
5:
/* Here, r1: Breakpoint Address, r2: Breakpoint Instruction */
	tst		r1, #BKPT_STATE_THUMB_FLAG		/* Check for Thumb bit -- 1: Thumb instruction */
	orreq	r0, r5, #BKPT32_AUTO_BKPT		/* Is ARM Instruction, merge AUTO flag with Current Breakpoint Index */
	orrne	r0, r5, #BKPT16_AUTO_BKPT		/* Is Thumb Instruction, merge AUTO flag with Current Breakpoint Index */
	bl		_dbg__activate_one_breakpoint	/* Activate AUTO Breakpoint */
	ldmfd	sp!, {pc}