aboutsummaryrefslogtreecommitdiff
path: root/AT91SAM7S256/Source/c_cmd_alternate.c
blob: 93662967289f82ec4343c8d814120fb7484d0bbc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
//
// File Description:
// This file contains an alternate implementation of c_cmd for testing purposes.
// It implements the minimal standard interface for the module, and serves as
//  an example of output module control via C code.
//

void      cCmdInit(void* pHeader)
{
  pHeaders        = pHeader;

  IOMapCmd.Awake = TRUE;

  dTimerInit();
  IOMapCmd.Tick = dTimerRead();

  return;
}

//Test: Start at speed 100 when enter is pressed; then progressively ramp down every half second until -100.
void      cCmdCtrl(void)
{
  static UBYTE State = 0;
  static ULONG MyTick = 0;

  if (pMapButton->State[BTN1] & PRESSED_EV)
  {
    pMapButton->State[BTN1] &= ~PRESSED_EV;

    //Coast both motors
    pMapOutPut->Outputs[0].Mode = MOTORON;
    pMapOutPut->Outputs[1].Mode = MOTORON;

    pMapOutPut->Outputs[0].Speed = 0;
    pMapOutPut->Outputs[0].TachoLimit = 0;
    pMapOutPut->Outputs[0].RunState = MOTOR_RUN_STATE_IDLE;
    pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_IDLE;

    pMapOutPut->Outputs[1].Speed = 0;
    pMapOutPut->Outputs[1].TachoLimit = 0;
    pMapOutPut->Outputs[1].RunState = MOTOR_RUN_STATE_IDLE;
    pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_IDLE;

    pMapOutPut->Outputs[0].Flags = UPDATE_MODE | UPDATE_SPEED;
    pMapOutPut->Outputs[1].Flags = UPDATE_MODE | UPDATE_SPEED;

    //Drop out of ongoing state machine
    State = 255;
  }

  switch(State)
  {
    case 0:
    {
      //Initialize
      pMapOutPut->Outputs[0].Flags = UPDATE_RESET_COUNT;
      pMapOutPut->Outputs[1].Flags = UPDATE_RESET_COUNT;
      pMapOutPut->Outputs[0].RunState = MOTOR_RUN_STATE_IDLE;
      pMapOutPut->Outputs[1].RunState = MOTOR_RUN_STATE_IDLE;

      State++;
    }
    break;

    case 1:
    {
      //Kick off further states only if Enter button is pressed
      if ((pMapButton->State[BTN4] & PRESSED_EV))
      {
        //Clear pressed event so UI doesn't re-use it.
        pMapButton->State[BTN4] &= ~PRESSED_EV;

        pMapOutPut->Outputs[0].Mode = MOTORON | BRAKE | REGULATED;
        pMapOutPut->Outputs[1].Mode = MOTORON | BRAKE | REGULATED;

        pMapOutPut->Outputs[0].Speed = 50;
        pMapOutPut->Outputs[0].TachoLimit = 1152;
        pMapOutPut->Outputs[0].RunState = MOTOR_RUN_STATE_RUNNING;
        pMapOutPut->Outputs[0].SyncTurnParameter = 25;
        //pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_MOTOR_SPEED;
        pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_MOTOR_SYNC;

        pMapOutPut->Outputs[1].Speed = 50;
        pMapOutPut->Outputs[1].TachoLimit = 1152;
        pMapOutPut->Outputs[1].RunState = MOTOR_RUN_STATE_RUNNING;
        //pMapOutPut->Outputs[1].SyncTurnParameter = -7;
        //pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_MOTOR_SPEED;
        pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_MOTOR_SYNC;

        pMapOutPut->Outputs[0].Flags = UPDATE_MODE | UPDATE_SPEED | UPDATE_TACHO_LIMIT;
        pMapOutPut->Outputs[1].Flags = UPDATE_MODE | UPDATE_SPEED | UPDATE_TACHO_LIMIT;

        State++;
      }
    }
    break;

    case 2:
    {
      if (pMapOutPut->Outputs[0].RunState == MOTOR_RUN_STATE_IDLE)
      {
        pMapOutPut->Outputs[0].Mode = MOTORON;
        pMapOutPut->Outputs[1].Mode = MOTORON;

        pMapOutPut->Outputs[0].Speed = 0;
        pMapOutPut->Outputs[0].TachoLimit = 0;
        pMapOutPut->Outputs[0].RunState = MOTOR_RUN_STATE_IDLE;
        pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_IDLE;

        pMapOutPut->Outputs[1].Speed = 0;
        pMapOutPut->Outputs[1].TachoLimit = 0;
        pMapOutPut->Outputs[1].RunState = MOTOR_RUN_STATE_IDLE;
        pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_IDLE;

        pMapOutPut->Outputs[0].Flags = UPDATE_MODE | UPDATE_SPEED;
        pMapOutPut->Outputs[1].Flags = UPDATE_MODE | UPDATE_SPEED;
        State++;
      }
    }
    break;

    case 3:
    {
        pMapOutPut->Outputs[0].Mode = MOTORON | BRAKE | REGULATED;
        pMapOutPut->Outputs[1].Mode = MOTORON | BRAKE | REGULATED;

        pMapOutPut->Outputs[0].Speed = 50;
        pMapOutPut->Outputs[0].TachoLimit = 1152;
        pMapOutPut->Outputs[0].RunState = MOTOR_RUN_STATE_RUNNING;
        //pMapOutPut->Outputs[0].SyncTurnParameter = 5;
        //pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_MOTOR_SPEED;
        pMapOutPut->Outputs[0].RegMode = REGULATION_MODE_MOTOR_SYNC;

        pMapOutPut->Outputs[1].Speed = 50;
        pMapOutPut->Outputs[1].TachoLimit = 1152;
        pMapOutPut->Outputs[1].RunState = MOTOR_RUN_STATE_RUNNING;
        //pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_MOTOR_SPEED;
        pMapOutPut->Outputs[1].RegMode = REGULATION_MODE_MOTOR_SYNC;

        pMapOutPut->Outputs[0].Flags = UPDATE_MODE | UPDATE_SPEED | UPDATE_TACHO_LIMIT;
        pMapOutPut->Outputs[1].Flags = UPDATE_MODE | UPDATE_SPEED | UPDATE_TACHO_LIMIT;

        State = 2;
    }
    break;

    default:
      break;
  };

  //Busy loop to ensure return on 1ms boundary
  BUSY_WAIT_NEXT_MS;

  IOMapCmd.Tick = dTimerRead();
  MyTick++;

  return;
}

void      cCmdExit(void)
{
  return;
}