# nxt.motor module -- Class to control LEGO Mindstorms NXT motors # Copyright (C) 2006 Douglas P Lau # Copyright (C) 2009 Marcus Wanner, rhn # Copyright (C) 2010 rhn # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. """Use for motor control""" import time import warnings PORT_A = 0x00 PORT_B = 0x01 PORT_C = 0x02 PORT_ALL = 0xFF MODE_IDLE = 0x00 MODE_MOTOR_ON = 0x01 MODE_BRAKE = 0x02 MODE_REGULATED = 0x04 REGULATION_IDLE = 0x00 REGULATION_MOTOR_SPEED = 0x01 REGULATION_MOTOR_SYNC = 0x02 RUN_STATE_IDLE = 0x00 RUN_STATE_RAMP_UP = 0x10 RUN_STATE_RUNNING = 0x20 RUN_STATE_RAMP_DOWN = 0x40 LIMIT_RUN_FOREVER = 0 class BlockedException(Exception): pass class OutputState(object): """An object holding the internal state of a motor, not including rotation counters. """ def __init__(self, values): (self.power, self.mode, self.regulation, self.turn_ratio, self.run_state, self.tacho_limit) = values def to_list(self): """Returns a list of properties that can be used with set_output_state. """ return [self.power, self.mode, self.regulation, self.turn_ratio, self.run_state, self.tacho_limit] def __str__(self): modes = [] if self.mode & MODE_MOTOR_ON: modes.append('on') if self.mode & MODE_BRAKE: modes.append('brake') if self.mode & MODE_REGULATED: modes.append('regulated') if not modes: modes.append('idle') mode = '&'.join(modes) regulation = 'regulation: ' + \ ['idle', 'speed', 'sync'][self.regulation] run_state = 'run state: ' + {0: 'idle', 0x10: 'ramp_up', 0x20: 'running', 0x40: 'ramp_down'}[self.run_state] return ', '.join([mode, regulation, str(self.turn_ratio), run_state] + [str(self.tacho_limit)]) class TachoInfo: """An object containing the information about the rotation of a motor""" def __init__(self, values): self.tacho_count, self.block_tacho_count, self.rotation_count = values def get_target(self, tacho_limit, direction): """Returns a TachoInfo object which corresponds to tacho state after moving for tacho_limit ticks. Direction can be 1 (add) or -1 (subtract) """ # TODO: adjust other fields if abs(direction) != 1: raise ValueError('Invalid direction') new_tacho = self.tacho_count + direction * tacho_limit return TachoInfo([new_tacho, None, None]) def is_greater(self, target, direction): return direction * (self.tacho_count - target.tacho_count) > 0 def is_near(self, target, threshold): difference = abs(target.tacho_count - self.tacho_count) return difference < threshold def __str__(self): return str((self.tacho_count, self.block_tacho_count, self.rotation_count)) class SynchronizedTacho(object): def __init__(self, leader_tacho, follower_tacho): self.leader_tacho = leader_tacho self.follower_tacho = follower_tacho def get_target(self, tacho_limit, direction): """This method will leave follower's target as None""" leader_tacho = self.leader_tacho.get_target(tacho_limit, direction) return SynchronizedTacho(leader_tacho, None) def is_greater(self, other, direction): return self.leader_tacho.is_greater(other.leader_tacho, direction) def is_near(self, other, threshold): return self.leader_tacho.is_near(other.leader_tacho, threshold) def __str__(self): if self.follower_tacho is not None: t2 = str(self.follower_tacho.tacho_count) else: t2 = 'None' t1 = str(self.leader_tacho.tacho_count) return 'tacho: ' + t1 + ' ' + t2 def get_tacho_and_state(values): """A convenience function. values is the list of values from get_output_state. Returns both OutputState and TachoInfo. """ return OutputState(values[1:7]), TachoInfo(values[7:]) class BaseMotor(object): """Base class for motors""" debug = 0 def _debug_out(self, message): if self.debug: print message def turn(self, power, tacho_units, brake=True, timeout=1, emulate=True): """Use this to turn a motor. The motor will not stop until it turns the desired distance. Accuracy is much better over a USB connection than with bluetooth... power is a value between -127 and 128 (an absolute value greater than 64 is recommended) tacho_units is the number of degrees to turn the motor. values smaller than 50 are not recommended and may have strange results. brake is whether or not to hold the motor after the function exits (either by reaching the distance or throwing an exception). timeout is the number of seconds after which a BlockedException is raised if the motor doesn't turn emulate is a boolean value. If set to False, the motor is aware of the tacho limit. If True, a run() function equivalent is used. Warning: motors remember their positions and not using emulate may lead to strange behavior, especially with synced motors """ tacho_limit = tacho_units if tacho_limit < 0: raise ValueError, "tacho_units must be greater than 0!" if self.method == 'bluetooth': threshold = 70 elif self.method == 'usb': threshold = 5 else: threshold = 30 #compromise tacho = self.get_tacho() state = self._get_new_state() # Update modifiers even if they aren't used, might have been changed state.power = power if not emulate: state.tacho_limit = tacho_limit self._debug_out('Updating motor information...') self._set_state(state) direction = 1 if power > 0 else -1 self._debug_out('tachocount: ' + str(tacho)) current_time = time.time() tacho_target = tacho.get_target(tacho_limit, direction) blocked = False try: while True: time.sleep(self._eta(tacho, tacho_target, power) / 2) if not blocked: # if still blocked, don't reset the counter last_tacho = tacho last_time = current_time tacho = self.get_tacho() current_time = time.time() blocked = self._is_blocked(tacho, last_tacho, direction) if blocked: self._debug_out(('not advancing', last_tacho, tacho)) # the motor can be up to 80+ degrees in either direction from target when using bluetooth if current_time - last_time > timeout: if tacho.is_near(tacho_target, threshold): break else: raise BlockedException("Blocked!") else: self._debug_out(('advancing', last_tacho, tacho)) if tacho.is_near(tacho_target, threshold) or tacho.is_greater(tacho_target, direction): break finally: if brake: self.brake() else: self.idle() class Motor(BaseMotor): def __init__(self, brick, port): self.brick = brick self.port = port self._read_state() self.sync = 0 self.turn_ratio = 0 if str(type(self.brick.sock)) == "": self.method = 'bluetooth' elif str(type(self.brick.sock)) == "": self.method = 'usb' else: print "Warning: Socket object does not of a known type." print "The name is: " + str(type(self.brick.sock)) print "Please report this problem to the developers!" print "For now, turn() accuracy will not be optimal." print "Continuing happily..." self.method = None def _set_state(self, state): self._debug_out('Setting brick output state...') list_state = [self.port] + state.to_list() self.brick.set_output_state(*list_state) self._debug_out(state) self._state = state self._debug_out('State set.') def _read_state(self): self._debug_out('Getting brick output state...') values = self.brick.get_output_state(self.port) self._debug_out('State got.') self._state, tacho = get_tacho_and_state(values) return self._state, tacho #def get_tacho_and_state here would allow tacho manipulation def _get_state(self): """Returns a copy of the current motor state for manipulation.""" return OutputState(self._state.to_list()) def _get_new_state(self): state = self._get_state() if self.sync: state.mode = MODE_MOTOR_ON | MODE_REGULATED state.regulation = REGULATION_MOTOR_SYNC state.turn_ratio = self.turn_ratio else: state.mode = MODE_MOTOR_ON | MODE_REGULATED state.regulation = REGULATION_MOTOR_SPEED state.run_state = RUN_STATE_RUNNING state.tacho_limit = LIMIT_RUN_FOREVER return state def get_tacho(self): return self._read_state()[1] def reset_position(self, relative): """Resets the counters. Relative can be True or False""" self.brick.reset_motor_position(self.port, relative) def run(self, power=100, regulated=False): '''Tells the motor to run continuously. If regulated is True, then the synchronization starts working. ''' state = self._get_new_state() state.power = power if not regulated: state.mode = MODE_MOTOR_ON self._set_state(state) def brake(self): """Holds the motor in place""" state = self._get_new_state() state.power = 0 state.mode = MODE_MOTOR_ON | MODE_BRAKE | MODE_REGULATED self._set_state(state) def idle(self): '''Tells the motor to stop whatever it's doing. It also desyncs it''' state = self._get_new_state() state.power = 0 state.mode = MODE_IDLE state.regulation = REGULATION_IDLE state.run_state = RUN_STATE_IDLE self._set_state(state) def weak_turn(self, power, tacho_units): """Tries to turn a motor for the specified distance. This function returns immediately, and it's not guaranteed that the motor turns that distance. This is an interface to use tacho_limit without REGULATION_MODE_SPEED """ tacho_limit = tacho_units tacho = self.get_tacho() state = self._get_new_state() # Update modifiers even if they aren't used, might have been changed state.mode = MODE_MOTOR_ON state.regulation = REGULATION_IDLE state.power = power state.tacho_limit = tacho_limit self._debug_out('Updating motor information...') self._set_state(state) def _eta(self, current, target, power): """Returns time in seconds. Do not trust it too much""" tacho = abs(current.tacho_count - target.tacho_count) return (float(tacho) / abs(power)) / 5 def _is_blocked(self, tacho, last_tacho, direction): """Returns if any of the engines is blocked""" return direction * (last_tacho.tacho_count - tacho.tacho_count) >= 0 class SynchronizedMotors(BaseMotor): """The object used to make two motors run in sync. Many objects may be present at the same time but they can't be used at the same time. Warning! Movement methods reset tacho counter. THIS CODE IS EXPERIMENTAL!!! """ def __init__(self, leader, follower, turn_ratio): """Turn ratio can be >= 0 only! If you want to have it reversed, change motor order. """ if follower.brick != leader.brick: raise ValueError('motors belong to different bricks') self.leader = leader self.follower = follower self.method = self.leader.method #being from the same brick, they both have the same com method. if turn_ratio < 0: raise ValueError('Turn ratio <0. Change motor order instead!') if self.leader.port == self.follower.port: raise ValueError("The same motor passed twice") elif self.leader.port > self.follower.port: self.turn_ratio = turn_ratio else: self._debug_out('reversed') self.turn_ratio = -turn_ratio def _get_new_state(self): return self.leader._get_new_state() def _set_state(self, state): self.leader._set_state(state) self.follower._set_state(state) def get_tacho(self): leadertacho = self.leader.get_tacho() followertacho = self.follower.get_tacho() return SynchronizedTacho(leadertacho, followertacho) def reset_position(self, relative): """Resets the counters. Relative can be True or False""" self.leader.reset_position(relative) self.follower.reset_position(relative) def _enable(self): # This works as expected. I'm not sure why. #self._disable() self.reset_position(True) self.leader.sync = True self.follower.sync = True self.leader.turn_ratio = self.turn_ratio self.follower.turn_ratio = self.turn_ratio def _disable(self): # This works as expected. (tacho is reset ok) self.leader.sync = False self.follower.sync = False #self.reset_position(True) self.leader.idle() self.follower.idle() #self.reset_position(True) def run(self, power=100): """Warning! After calling this method, make sure to call idle. The motors are reported to behave wildly otherwise. """ self._enable() self.leader.run(power, True) self.follower.run(power, True) def brake(self): self._disable() # reset the counters self._enable() self.leader.brake() # brake both motors at the same time self.follower.brake() self._disable() # now brake as usual self.leader.brake() self.follower.brake() def idle(self): self._disable() def turn(self, power, tacho_units, brake=True, timeout=1): self._enable() # non-emulation is a nightmare, tacho is being counted differently try: if power < 0: self.leader, self.follower = self.follower, self.leader BaseMotor.turn(self, power, tacho_units, brake, timeout, emulate=True) finally: if power < 0: self.leader, self.follower = self.follower, self.leader def _eta(self, tacho, target, power): return self.leader._eta(tacho.leader_tacho, target.leader_tacho, power) def _is_blocked(self, tacho, last_tacho, direction): # no need to check both, they're synced return self.leader._is_blocked(tacho.leader_tacho, last_tacho.leader_tacho, direction)