From 5fc4a664dc0be3f380aba9480b710b9047f29fad Mon Sep 17 00:00:00 2001 From: Fredric Silberberg Date: Sun, 6 Aug 2017 02:09:34 -0700 Subject: Added initial key lock documentation. --- docs/key_lock.md | 11 +++++++++++ 1 file changed, 11 insertions(+) create mode 100644 docs/key_lock.md (limited to 'docs/key_lock.md') diff --git a/docs/key_lock.md b/docs/key_lock.md new file mode 100644 index 000000000..03cea2089 --- /dev/null +++ b/docs/key_lock.md @@ -0,0 +1,11 @@ +## Key Lock: Holding down keys for you + +Sometimes, you need to hold down a specific key for a long period of time. Whether this is while typing in ALL CAPS, or playing a video game that hasn't implemented auto-run, Key Lock is here to help. Key Lock adds a new keycode, `KC_LOCK`, that will hold down the next key you hit for you. The key is released when you hit it again. Here's an example: let's say you need to type in all caps for a few sentences. You hit KC_LOCK, and then shift. Now, shift will be considered held until you hit it again. You can think of key lock as caps lock, but supercharged. + +Here's how to use it: + +1. Pick a key on your keyboard. This will be the key lock key. Assign it the keycode `KC_LOCK`. This will be a single-action key: you won't be able to use it for anything else. +2. Enable key lock by including `KEY_LOCK_ENABLE = yes` in your Makefile. +3. That's it! + +Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys. This does not include any of the QMK special functions, or shifted versions of keys such as KC_LPRN. If it's in the [basic_keycodes](basic_keycodes.md) list, it can be held. If it's not, then it can't be. -- cgit v1.2.3 From a3e1d9a8cc8b3d376d52f86aacae6315b15efebf Mon Sep 17 00:00:00 2001 From: Fredric Silberberg Date: Sun, 6 Aug 2017 14:14:27 -0700 Subject: Added support for locking One Shot modifiers. --- docs/key_lock.md | 2 +- keyboards/nyquist/keymaps/333fred/Makefile | 1 + quantum/process_keycode/process_key_lock.c | 41 ++++++++++++++++++++++-------- quantum/process_keycode/process_key_lock.h | 2 +- quantum/quantum.c | 2 +- 5 files changed, 34 insertions(+), 14 deletions(-) (limited to 'docs/key_lock.md') diff --git a/docs/key_lock.md b/docs/key_lock.md index 03cea2089..e424061a9 100644 --- a/docs/key_lock.md +++ b/docs/key_lock.md @@ -8,4 +8,4 @@ Here's how to use it: 2. Enable key lock by including `KEY_LOCK_ENABLE = yes` in your Makefile. 3. That's it! -Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys. This does not include any of the QMK special functions, or shifted versions of keys such as KC_LPRN. If it's in the [basic_keycodes](basic_keycodes.md) list, it can be held. If it's not, then it can't be. +Important: switching layers does not cancel the key lock. Additionally, key lock is only able to hold standard action keys and One Shot modifier keys (for example, if you have your shift defined as `OSM(KC_LSFT)`; see [One Shot Keys](quantum_keycodes.md#one-shot-keys)). This does not include any of the QMK special functions (except One Shot modifiers), or shifted versions of keys such as KC_LPRN. If it's in the [basic_keycodes](basic_keycodes.md) list, it can be held. If it's not, then it can't be. diff --git a/keyboards/nyquist/keymaps/333fred/Makefile b/keyboards/nyquist/keymaps/333fred/Makefile index 576bb3c30..f85443280 100644 --- a/keyboards/nyquist/keymaps/333fred/Makefile +++ b/keyboards/nyquist/keymaps/333fred/Makefile @@ -1,5 +1,6 @@ KEY_LOCK_ENABLE = yes NKRO_ENABLE = yes +CONSOLE_ENABLE = yes ifndef QUANTUM_DIR include ../../../../Makefile diff --git a/quantum/process_keycode/process_key_lock.c b/quantum/process_keycode/process_key_lock.c index e3632b74f..b1ba397a0 100644 --- a/quantum/process_keycode/process_key_lock.c +++ b/quantum/process_keycode/process_key_lock.c @@ -50,7 +50,16 @@ uint64_t key_state[4] = { 0x0, 0x0, 0x0, 0x0 }; bool watching = false; -bool process_key_lock(uint16_t keycode, keyrecord_t *record) { +// Translate any OSM keycodes back to their unmasked versions. +uint16_t inline translate_keycode(uint16_t keycode) { + if (keycode > QK_ONE_SHOT_MOD && keycode <= QK_ONE_SHOT_MOD_MAX) { + return keycode ^ QK_ONE_SHOT_MOD; + } else { + return keycode; + } +} + +bool process_key_lock(uint16_t *keycode, keyrecord_t *record) { // We start by categorizing the keypress event. In the event of a down // event, there are several possibilities: // 1. The key is not being locked, and we are not watching for new keys. @@ -76,44 +85,54 @@ bool process_key_lock(uint16_t keycode, keyrecord_t *record) { // 2. The key is being locked. In this case, we will mask the up event // by returning false, so the OS never sees that the key was released // until the user pressed the key again. + + // We translate any OSM keycodes back to their original keycodes, so that if the key being + // one-shot modded is a standard keycode, we can handle it. This is the only set of special + // keys that we handle + uint16_t translated_keycode = translate_keycode(*keycode); + if (record->event.pressed) { // Non-standard keycode, reset and return - if (!(IS_STANDARD_KEYCODE(keycode) || keycode == KC_LOCK)) { + if (!(IS_STANDARD_KEYCODE(translated_keycode) || translated_keycode == KC_LOCK)) { watching = false; return true; } // If we're already watching, turn off the watch. - if (keycode == KC_LOCK) { + if (translated_keycode == KC_LOCK) { watching = !watching; return false; } - - if (IS_STANDARD_KEYCODE(keycode)) { + + if (IS_STANDARD_KEYCODE(translated_keycode)) { // We check watching first. This is so that in the following scenario, we continue to // hold the key: KC_LOCK, KC_F, KC_LOCK, KC_F // If we checked in reverse order, we'd end up holding the key pressed after the second // KC_F press is registered, when the user likely meant to hold F if (watching) { watching = false; - SET_KEY_STATE(keycode); + SET_KEY_STATE(translated_keycode); + // We need to set the keycode passed in to be the translated keycode, in case we + // translated a OSM back to the original keycode. + *keycode = translated_keycode; // Let the standard keymap send the keycode down event. The up event will be masked. return true; } - - if (KEY_STATE(keycode)) { - UNSET_KEY_STATE(keycode); + + if (KEY_STATE(translated_keycode)) { + UNSET_KEY_STATE(translated_keycode); // The key is already held, stop this process. The up event will be sent when the user // releases the key. return false; } } - + // Either the key isn't a standard key, or we need to send the down event. Continue standard // processing return true; } else { // Stop processing if it's a standard key and we're masking up. - return !(IS_STANDARD_KEYCODE(keycode) && KEY_STATE(keycode)); + return !(IS_STANDARD_KEYCODE(translated_keycode) && KEY_STATE(translated_keycode)); } } + diff --git a/quantum/process_keycode/process_key_lock.h b/quantum/process_keycode/process_key_lock.h index 237e103bc..876db4a32 100644 --- a/quantum/process_keycode/process_key_lock.h +++ b/quantum/process_keycode/process_key_lock.h @@ -19,6 +19,6 @@ #include "quantum.h" -bool process_key_lock(uint16_t keycode, keyrecord_t *record); +bool process_key_lock(uint16_t *keycode, keyrecord_t *record); #endif // PROCESS_KEY_LOCK_H diff --git a/quantum/quantum.c b/quantum/quantum.c index c71a97bf2..0243a7e01 100644 --- a/quantum/quantum.c +++ b/quantum/quantum.c @@ -195,7 +195,7 @@ bool process_record_quantum(keyrecord_t *record) { if (!( #if defined(KEY_LOCK_ENABLE) // Must run first to be able to mask key_up events. - process_key_lock(keycode, record) && + process_key_lock(&keycode, record) && #endif process_record_kb(keycode, record) && #if defined(MIDI_ENABLE) && defined(MIDI_ADVANCED) -- cgit v1.2.3