summaryrefslogtreecommitdiff
path: root/tools/convert/convert.h
blob: 370df21439ebc9aa979e6b7b09f6602e77efc0f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
// Hide math stuff here.
//

static float Identity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 };

// Perform a 4x4 matrix multiplication  (product = a x b).
// WARNING: (product != b) assumed
static __inline void matmul(float *product, const float *a, const float *b)
{
	int i;

//	#define M(row,col)  m[col*4+row]
#define A(row,col)  a[(col<<2)+row]
#define B(row,col)  b[(col<<2)+row]
#define P(row,col)  product[(col<<2)+row]

	for (i = 0; i < 4; i++) 
	{
		float ai0=A(i,0),  ai1=A(i,1),  ai2=A(i,2),  ai3=A(i,3);
		P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
		P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
		P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
		P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
	}

#undef A
#undef B
#undef P
}

typedef struct
{
	float m[16];
} matrix;

static __inline void ConvertFromLDraw(matrix* m, float f[12])
{
	float trans[16] = { 1,0,0,0, 0,0,-1,0, 0,1,0,0, 0,0,0,1 };
	float t[16] = { 1,0,0,0, 0,0,1,0, 0,-1,0,0, 0,0,0,1 };
	m->m[0] = f[3];	m->m[1] = f[6];	m->m[2] = f[9];
	m->m[4] = f[4];	m->m[5] = f[7];	m->m[6] = f[10];
	m->m[8] = f[5];	m->m[9] = f[8];	m->m[10]= f[11];
	m->m[12]= f[0]/25;	m->m[13]= f[1]/25;	m->m[14]= f[2]/25;
	matmul (m->m, m->m, t);
	matmul (trans, trans, m->m);
	memcpy (&m[0], &trans[0], sizeof(m->m));
}

static __inline void LoadIdentity(matrix* m)
{
	memcpy (&m->m[0], &Identity, sizeof(float[16]));
}

static __inline void Multiply(matrix* m, matrix* m1, matrix* m2)
{
	matmul (m->m, m1->m, m2->m);
}

static __inline void TransformPoint(matrix* m, float out[], const float in[3])
{
	out[0] = m->m[0]*in[0] + m->m[4]*in[1] + m->m[8]*in[2] + m->m[12];
	out[1] = m->m[1]*in[0] + m->m[5]*in[1] + m->m[9]*in[2] + m->m[13];
	out[2] = m->m[2]*in[0] + m->m[6]*in[1] + m->m[10]*in[2] + m->m[14];
}

static __inline void TranslatePoint(matrix* m, float* in, float* t)
{
	in[0] = m->m[0]*t[0] + m->m[4]*t[1] + m->m[8]*t[2] + m->m[12];
	in[1] = m->m[1]*t[0] + m->m[5]*t[1] + m->m[9]*t[2] + m->m[13];
	in[2] = m->m[2]*t[0] + m->m[6]*t[1] + m->m[10]*t[2] + m->m[14];
}

static __inline void TransformPoints (matrix* m, float p[], int n)
{
	int i;
	float tmp[3];

	for (i = 0; i < n*3; i += 3)
	{
		tmp[0] = p[i];
		tmp[1] = p[i+1];
		tmp[2] = p[i+2];
		TransformPoint (m, &p[i], tmp);
	}
}

static __inline void ConvertPoints (float pts[], int count)
{
	float tmp;
	int i;

	for (i = 0; i < count; i++)
	{
		pts[3*i] /= 25;
		tmp = pts[3*i+1];
		pts[3*i+1] = pts[3*i+2]/25;
		pts[3*i+2] = -tmp/25;
	}
}

static __inline void Resequence(float v[4][3], int a, int b, int c, int d)
{
	float o[4][3];
	memcpy(o, v, sizeof(o));
	memcpy(v[0], o[a], sizeof(o[0]));
	memcpy(v[1], o[b], sizeof(o[0]));
	memcpy(v[2], o[c], sizeof(o[0]));
	memcpy(v[3], o[d], sizeof(o[0]));
}

static __inline void Sub3(float v[], float q1[], float q2[])
{
	v[0] = q1[0]-q2[0];
	v[1] = q1[1]-q2[1];
	v[2] = q1[2]-q2[2];
}

static __inline float Dot3(float q1[], float q2[])
{
	return q1[0]*q2[0]+q1[1]*q2[1]+q1[2]*q2[2];
}

static __inline void Cross3(float v[], float q1[], float q2[])
{
	v[0] = (q1[1]*q2[2]) - (q1[2]*q2[1]);
	v[1] = (q1[2]*q2[0]) - (q1[0]*q2[2]);
	v[2] = (q1[0]*q2[1]) - (q1[1]*q2[0]);
}

static __inline void TestQuads(float quad[4][3])
{
	float v01[3], v02[3], v03[3];
	float v12[3], v13[3], v23[3];
	float cp1[3], cp2[3];
	float dotA, dotB, dotC;
	int A, B, C;
	
	// Calculate A
	Sub3(v01, quad[1], quad[0]);
	Sub3(v02, quad[2], quad[0]);
	Sub3(v03, quad[3], quad[0]);
	Cross3(cp1, v01, v02);
	Cross3(cp2, v02, v03);
	dotA = Dot3(cp1, cp2);
	A = (dotA > 0.0f);
	
	if (A)
	{
		// 3 is in I, typical case, OK: 0123 D02 (convex/concave)
		// CONVEXINFO: quad is convex if (!B && !C): OK: 0123 D02/13 (convex)
	}
	else
	{
		// Calculate B and C (may be postponed/discarded)
		// NOTE: postponed !
		Sub3(v12, quad[2], quad[1]);
		Sub3(v13, quad[3], quad[1]);
		Sub3(v23, quad[3], quad[2]);
		Cross3(cp1, v12, v01);
		Cross3(cp2, v01, v13);
		dotB = Dot3(cp1, cp2);
		B = (dotB > 0.0f);
		Cross3(cp1, v02, v12);
		Cross3(cp2, v12, v23);
		dotC = -Dot3(cp1, cp2);
		C = (dotC > 0.0f);

		// 3 is in II, III, IV or V. Calculation of B and C could be postponed
		//	to here if CONVEXINFO (above) is not needed
		if (B)
		{
			// 3 is in II or III
			if (C)
			{
				// 3 is in II, OK: 0123 D13 (concave)
				Resequence(quad, 1, 2, 3, 0); // just to shift diagonal
			}
			else
			{
				// 3 is in III, bow-tie error: using 0312 D01/D23 (convex)
				Resequence(quad, 0, 3, 1, 2);
			}
		}
		else
		{
			// 3 is in IV or V
			if (C)
			{
				// 3 is in IV, bow-tie error: using 0132 D12/D03 (convex)
				Resequence(quad, 0, 1, 3, 2);
			}
			else
			{
				// 3 is in V, OK: 0123 D13 (concave)
				Resequence(quad, 1, 2, 3, 0); // just to shift diagonal
			}
		}
	}
	// The four vertices quad[0], quad[1], quad[2] and quad[3] now have
	// the correct sequence, the polygon can be divided by the diagonal 02
	// into two triangles, 012 and 230.
}

static __inline void FixQuads(float quad[])
{
	float t[4][3];
	memcpy(t, quad, sizeof(t));
	TestQuads(t);
	memcpy(quad, t, sizeof(t));
}

static __inline int FloatPointsClose (float pt1[], float pt2[])
{
	if (fabs(pt1[0] - pt2[0]) > 0.01)
		return 0;
	if (fabs(pt1[1] - pt2[1]) > 0.01)
		return 0;
	if (fabs(pt1[2] - pt2[2]) > 0.01)
		return 0;
	return 1;
}