summaryrefslogtreecommitdiff
path: root/common/algebra.cpp
blob: fe60ca65329fe82010657b27b3346a466a15e1fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
//
// Math and Linear Algebra stuff.
//

#include "defines.h"
#include "algebra.h"

// ============================================================================
// 4x4 Matrix class.

void Matrix44::CreateLookAt(const Point3& Eye, const Point3& Target, const Vector3& Up)
{
	Vector3 x, y, z;

	// Z = Eye - Target
	z = Eye - Target;

  // X = Y Cross Z
	x = Cross3(Up, z);

  // Y = Z Cross X
	y = Cross3(z, x);

	// Normalize everything.
	x.Normalize();
	y.Normalize();
	z.Normalize();

	m_Rows[0] = Vector4(x.GetX(), y.GetX(), z.GetX(), 0.0f);
	m_Rows[1] = Vector4(x.GetY(), y.GetY(), z.GetY(), 0.0f);
	m_Rows[2] = Vector4(x.GetZ(), y.GetZ(), z.GetZ(), 0.0f);
	m_Rows[3] = m_Rows[0]*-Eye.GetX() + m_Rows[1]*-Eye.GetY() + m_Rows[2]*-Eye.GetZ();
	m_Rows[3][3] = 1.0f;
}

void Matrix44::CreatePerspective(float FoVy, float Aspect, float Near, float Far)
{
	float Left, Right, Bottom, Top;

	Top = Near * (float)tan(FoVy * LC_PI / 360.0f);
	Bottom = -Top;

	Left = Bottom * Aspect;
	Right = Top * Aspect;

	if ((Near <= 0.0f) || (Far <= 0.0f) || (Near == Far) || (Left == Right) || (Top == Bottom))
		return;

	float x, y, a, b, c, d;

	x = (2.0f * Near) / (Right - Left);
	y = (2.0f * Near) / (Top - Bottom);
	a = (Right + Left) / (Right - Left);
	b = (Top + Bottom) / (Top - Bottom);
	c = -(Far + Near) / (Far - Near);
	d = -(2.0f * Far * Near) / (Far - Near);

	m_Rows[0] = Vector4(x, 0, 0,  0);
	m_Rows[1] = Vector4(0, y, 0,  0);
	m_Rows[2] = Vector4(a, b, c, -1);
	m_Rows[3] = Vector4(0, 0, d,  0);
}

// Inverse code from the GLU library.
Matrix44 Inverse(const Matrix44& m)
{
#define SWAP_ROWS(a, b) { float *_tmp = a; (a)=(b); (b)=_tmp; }
#define MAT(m,c,r) m.m_Rows[r][c]

	float wtmp[4][8];
	float m0, m1, m2, m3, s;
	float *r0, *r1, *r2, *r3;

	r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];

	r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
	r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
	r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,

	r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
	r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
	r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,

	r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
	r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
	r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,

	r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
	r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
	r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;

	// choose pivot - or die
	if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
	if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
	if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
//	if (0.0 == r0[0])  return GL_FALSE;

	// eliminate first variable
	m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
	s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
	s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
	s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
	s = r0[4];
	if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
	s = r0[5];
	if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
	s = r0[6];
	if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
	s = r0[7];
	if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }

	// choose pivot - or die
	if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
	if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
//	if (0.0 == r1[1])  return GL_FALSE;

	// eliminate second variable
	m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
	r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
	r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
	s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
	s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
	s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
	s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }

	// choose pivot - or die
	if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
//	if (0.0 == r2[2])  return GL_FALSE;

	// eliminate third variable
	m3 = r3[2]/r2[2];
	r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
	r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
	r3[7] -= m3 * r2[7];

	// last check
//	if (0.0 == r3[3]) return GL_FALSE;

	s = 1.0f/r3[3];              // now back substitute row 3
	r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;

	m2 = r2[3];                 // now back substitute row 2
	s  = 1.0f/r2[2];
	r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
	r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
	m1 = r1[3];
	r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
	r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
	m0 = r0[3];
	r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
	r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;

	m1 = r1[2];                 // now back substitute row 1
	s  = 1.0f/r1[1];
	r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
	r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
	m0 = r0[2];
	r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
	r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;

	m0 = r0[1];                 // now back substitute row 0
	s  = 1.0f/r0[0];
	r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
	r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);

	Vector4 Row0(r0[4], r1[4], r2[4], r3[4]);
	Vector4 Row1(r0[5], r1[5], r2[5], r3[5]);
	Vector4 Row2(r0[6], r1[6], r2[6], r3[6]);
	Vector4 Row3(r0[7], r1[7], r2[7], r3[7]);
	
	Matrix44 out(Row0, Row1, Row2, Row3);
	
	return out;

#undef MAT
#undef SWAP_ROWS
}

// ============================================================================
// Project/Unproject a point.

// Convert world coordinates to screen coordinates.
Point3 ProjectPoint(const Point3& Pt, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
{
	Vector4 Tmp;

	Tmp = Vector4(Pt) * ModelView;
	Tmp = Tmp * Projection;

	// Normalize.
	Tmp /= Tmp[3];

	// Screen coordinates.
	return Point3(Viewport[0]+(1+Tmp[0])*Viewport[2]/2, Viewport[1]+(1+Tmp[1])*Viewport[3]/2, (1+Tmp[2])/2);
}

// Convert screen coordinates to world coordinates.
Point3 UnprojectPoint(const Point3& Point, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
{
	Point3 Tmp = Point;
	UnprojectPoints(&Tmp, 1, ModelView, Projection, Viewport);
	return Tmp;
}

void UnprojectPoints(Point3* Points, int NumPoints, const Matrix44& ModelView, const Matrix44& Projection, const int Viewport[4])
{
	// Calculate the screen to model transform.
	Matrix44 Transform = Inverse(ModelView * Projection);

	for (int i = 0; i < NumPoints; i++)
	{
		Vector4 Tmp;

		// Convert the point to homogeneous coordinates.
		Tmp[0] = (Points[i][0] - Viewport[0]) * 2.0f / Viewport[2] - 1.0f;
		Tmp[1] = (Points[i][1] - Viewport[1]) * 2.0f / Viewport[3] - 1.0f;
		Tmp[2] = Points[i][2] * 2.0f - 1.0f;
		Tmp[3] = 1.0f;

		Tmp = Tmp * Transform;

		if (Tmp[3] != 0.0f)
			Tmp /= Tmp[3];

		Points[i] = Point3(Tmp[0], Tmp[1], Tmp[2]);
	}
}

// ============================================================================
// Geometry functions.

// Sutherland-Hodgman method of clipping a polygon to a plane.
void PolygonPlaneClip(Point3* InPoints, int NumInPoints, Point3* OutPoints, int* NumOutPoints, const Vector4& Plane)
{
	Point3 *s, *p, i;

	*NumOutPoints = 0;
	s = &InPoints[NumInPoints-1];

	for (int j = 0; j < NumInPoints; j++)
	{
		p = &InPoints[j];

		if (Dot3(*p, Plane) + Plane[3] <= 0)
		{
			if (Dot3(*s, Plane) + Plane[3] <= 0)
			{
				// Both points inside.
				OutPoints[*NumOutPoints] = *p;
				*NumOutPoints = *NumOutPoints + 1;
			}
			else
			{
				// Outside, inside.
				LinePlaneIntersection(i, *s, *p, Plane);

				OutPoints[*NumOutPoints] = i;
				*NumOutPoints = *NumOutPoints + 1;
				OutPoints[*NumOutPoints] = *p;
				*NumOutPoints = *NumOutPoints + 1;
			}
		}
		else
		{
			if (Dot3(*s, Plane) + Plane[3] <= 0)
			{
				// Inside, outside.
				LinePlaneIntersection(i, *s, *p, Plane);

				OutPoints[*NumOutPoints] = i;
				*NumOutPoints = *NumOutPoints + 1;
			}
		}

		s = p;
	}
}

// Return the intersction point of a line and a plane, or false if they are parallel.
bool LinePlaneIntersection(Point3& Intersection, const Point3& Start, const Point3& End, const Vector4& Plane)
{
	Vector3 Dir = End - Start;

	float t1 = Dot3(Plane, Start) + Plane[3];
	float t2 = Dot3(Plane, Dir);

	if (t2 == 0.0f)
		return false;

	Intersection = Start - (t1 / t2) * Dir;

	return true;
}