summaryrefslogtreecommitdiff
path: root/digital/io/src/food.c
blob: 62c79f3eae4dd27400895a35c633781f87f08807 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
/* food.c */
/* io - Input & Output with Artificial Intelligence (ai) support on AVR. {{{
 *
 * Copyright (C) 2010 Nicolas Schodet
 *
 * APBTeam:
 *        Web: http://apbteam.org/
 *      Email: team AT apbteam DOT org
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * }}} */
#include "common.h"
#include "defs.h"
#include "food.h"

#include "modules/utils/utils.h"

/** Maximum distance from a line segment to food center so that the robot is
 * able to pick a food. */
#define FOOD_NEAR_MM (310 / 2 - 50 - 30)

/** Minimum distance from a line segment to food center so that the robot do
 * not touch the food. */
#define FOOD_FAR_MM (450 / 2 - 10)

/** Food type. */
enum food_type_t
{
    FOOD_TYPE_TOMATO,
    FOOD_TYPE_CORN,
};

/** Food information. */
struct food_t
{
    /** Whether this food is still here or not. */
    uint8_t valid;
    /** Food position. */
    vect_t pos;
    /** Food type.  Corn can be good or bad. */
    enum food_type_t type;
};

/** Information gathered on food. */
struct food_t food_table[] =
{
    /* {{{ */
    /* First half. */
      { 1, { 150, 128 + 5 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150, 128 + 4 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 150, 128 + 3 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150, 128 + 2 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 150, 128 + 1 * 250 }, FOOD_TYPE_CORN },

      { 1, { 150 + 1 * 450, 128 + 4 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150 + 1 * 450, 128 + 3 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 150 + 1 * 450, 128 + 2 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150 + 1 * 450, 128 + 1 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 150 + 1 * 450, 128 + 0 * 250 }, FOOD_TYPE_CORN },

      { 1, { 150 + 2 * 450, 128 + 3 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150 + 2 * 450, 128 + 2 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 150 + 2 * 450, 128 + 1 * 250 }, FOOD_TYPE_CORN },
      { 1, { 150 + 2 * 450, 128 + 0 * 250 }, FOOD_TYPE_TOMATO },

    /* Second half. */
      { 1, { 3000 - 150, 128 + 5 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150, 128 + 4 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 - 150, 128 + 3 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150, 128 + 2 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 - 150, 128 + 1 * 250 }, FOOD_TYPE_CORN },

      { 1, { 3000 - 150 - 1 * 450, 128 + 4 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150 - 1 * 450, 128 + 3 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 - 150 - 1 * 450, 128 + 2 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150 - 1 * 450, 128 + 1 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 - 150 - 1 * 450, 128 + 0 * 250 }, FOOD_TYPE_CORN },

      { 1, { 3000 - 150 - 2 * 450, 128 + 3 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150 - 2 * 450, 128 + 2 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 - 150 - 2 * 450, 128 + 1 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 - 150 - 2 * 450, 128 + 0 * 250 }, FOOD_TYPE_TOMATO },

    /* Center. */
      { 1, { 3000 / 2, 128 + 3 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 / 2, 128 + 2 * 250 }, FOOD_TYPE_CORN },
      { 1, { 3000 / 2, 128 + 1 * 250 }, FOOD_TYPE_TOMATO },
      { 1, { 3000 / 2, 128 + 0 * 250 }, FOOD_TYPE_CORN },
    /* }}} */
};

uint8_t
food_blocking (uint8_t food)
{
    assert (food < UTILS_COUNT (food_table) || food == 0xff);
    return food != 0xff && food_table[food].type == FOOD_TYPE_CORN;
}

uint8_t
food_blocking_path (vect_t a, vect_t b, int16_t ab)
{
    uint8_t i;
    /* For each obstacle, try to find an intersection. */
    for (i = 0; i < UTILS_COUNT (food_table); i++)
      {
	if (food_table[i].valid)
	  {
	    /* Compute square of distance to obstacle, see
	     * distance_segment_point in modules/math/geometry for the method
	     * explanation. */
	    int32_t absq = (int32_t) ab * ab;
	    vect_t vab = b; vect_sub (&vab, &a);
	    vect_t vao = food_table[i].pos; vect_sub (&vao, &a);
	    int32_t dp = vect_dot_product (&vab, &vao);
	    int32_t dsq;
	    if (dp < 0)
	      {
		dsq = vect_dot_product (&vao, &vao);
	      }
	    else if (dp > absq)
	      {
		vect_t vbo = food_table[i].pos; vect_sub (&vbo, &b);
		dsq = vect_dot_product (&vbo, &vbo);
	      }
	    else
	      {
		vect_t vabn = vab; vect_normal (&vabn);
		dsq = vect_dot_product (&vabn, &vao) / ab;
		dsq *= dsq;
	      }
	    /* Compare with square of authorised distance. */
	    if (dsq < (int32_t) FOOD_FAR_MM * FOOD_FAR_MM
		&& (food_table[i].type != FOOD_TYPE_TOMATO
		    || dsq > (int32_t) FOOD_NEAR_MM * FOOD_NEAR_MM))
		return 1;
	  }
      }
    return 0;
}