/* servo.c */ /* Beacon servomotor management. {{{ * * Copyright (C) 2012 Florent Duchon * * APBTeam: * Web: http://apbteam.org/ * Email: team AT apbteam DOT org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * }}} */ #include #include #include "servo.h" #include "print.h" servo_s servo1; servo_s servo2; static HAL_AppTimer_t waveTimer; // TIMER descripor used by the DEBUG task /* This function initializes low and high level modules for servos */ void servo_init(void) { servo_timer1_init(); servo_structure_init(); } /* This function initializes the timer used for servomotor signal generation */ void servo_timer1_init(void) { //Fpwm = f_IO / (prescaler * (1 + TOP)) = 7200 Hz. */ OCR1B = SERVO_ANGLE_MAX; OCR1A = SERVO_ANGLE_MIN; /* Fast PWM 10bits with TOP=0x03FF */ TCCR1A |= (1< SERVO_ANGLE_MIN) { OCR1A--; } return OCR1A; break; case SERVO_2: if(OCR1B < SERVO_ANGLE_MAX) { OCR1B++; } return OCR1B; break; default: break; } return -1; } /* This function decreases by one unit the angle of the defined servo and returns "angle" value*/ int16_t servo_angle_decrease(TServo_ID servo_id) { switch(servo_id) { case SERVO_1: if(OCR1A < SERVO_ANGLE_MAX) { OCR1A++; } return OCR1A; break; case SERVO_2: if(OCR1B > SERVO_ANGLE_MIN) { OCR1B--; } return OCR1B; break; default: break; } return -1; } /* This function returns the "angle" value of a defined servo */ int16_t servo_get_value(TServo_ID servo_id) { switch(servo_id) { case SERVO_1: return OCR1A; break; case SERVO_2: return OCR1B; break; default: break; } return -1; } /* This function sets the "angle" value of a defined servo */ int16_t servo_set_value(TServo_ID servo_id,int16_t value) { if(value < SERVO_ANGLE_MIN) value = SERVO_ANGLE_MIN; else if(value > SERVO_ANGLE_MAX) value = SERVO_ANGLE_MAX; switch(servo_id) { case SERVO_1: OCR1A = value; break; case SERVO_2: OCR1B= value; break; default: break; } return value; } /* This function returns the current state of a defined servo */ TServo_state servo_get_state(TServo_ID servo_id) { switch(servo_id) { case SERVO_1: return servo1.state; case SERVO_2: return servo2.state; default: break; } return -1; } /* This function updates the state of a defined servo */ void servo_set_state(TServo_ID servo_id,TServo_state state) { switch(servo_id) { case SERVO_1: servo1.state = state; break; case SERVO_2: servo2.state = state; break; default: break; } } /* This function returns the scanning sens of the defined servo */ int8_t servo_get_scanning_sense(TServo_ID servo_id) { switch(servo_id) { case SERVO_1: return servo1.scanning_sense; break; case SERVO_2: return servo2.scanning_sense; break; default: break; } return 0; } /* This function inverses the scanning sense of the servo */ void servo_inverse_scanning_sense(TServo_ID servo_id) { switch(servo_id) { case SERVO_1: servo1.scanning_sense *= -1; break; case SERVO_2: servo2.scanning_sense *= -1; break; default: break; } } /* This function generates a wave scanning */ void servo_waveform_scanning(TServo_ID servo_id, uint8_t average_value) { uint16_t next_value = 0; uint16_t current_value = 0; /* Compute next value to set to the servo */ next_value = servo_get_value(servo_id) + servo_get_scanning_sense(servo_id); /* Set it and check the return value in order to inverse the sense MIN or MAX is reached */ current_value = servo_set_value(servo_id,next_value); if((current_value <= average_value - SERVO_WAVE_OFFSET) || (current_value >= average_value + SERVO_WAVE_OFFSET)) { servo_inverse_scanning_sense(servo_id); } } /* Wave Task */ void servo_wave_task(void) { static bool first_time = 1; static uint8_t average_value[2] = {0}; /* Get and save the average value found with the calibration */ if(first_time == 1) { average_value[SERVO_1] = servo_get_value(SERVO_1); average_value[SERVO_2] = servo_get_value(SERVO_2); first_time = 0; } /* Scan each servos */ servo_waveform_scanning(SERVO_1,average_value[SERVO_1]); servo_waveform_scanning(SERVO_2,average_value[SERVO_2]); } /* Start wave task */ void servo_start_wave_task(void) { waveTimer.interval = WAVE_TASK_PERIOD; waveTimer.mode = TIMER_REPEAT_MODE; waveTimer.callback = servo_wave_task; HAL_StartAppTimer(&waveTimer); } /* Stop wave task */ void servo_stop_wave_task(void) { HAL_StopAppTimer(&waveTimer); } SIGNAL (SIG_OVERFLOW1) { }