/* models.host.c */ /* asserv - Position & speed motor control on AVR. {{{ * * Copyright (C) 2006 Nicolas Schodet * * APBTeam: * Web: http://apbteam.org/ * Email: team AT apbteam DOT org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * }}} */ #define _GNU_SOURCE 1 /* Need ISO C99 features as well. */ #include "common.h" #include "modules/utils/utils.h" #include "io.h" #include "models.host.h" #include "simu.host.h" #include "aux.h" #include AC_ASSERV_CONTACTS_H #include #include #define NO_CORNER { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } } static void simu_sensor_update_giboulee (void); static void simu_sensor_update_aquajim (void); static void simu_sensor_update_marcel (void); static void marcel_robot_init (const struct robot_t *robot, struct motor_model_t *main_motor_left, struct motor_model_t *main_motor_right, struct motor_model_t aux_motor[]); static int simu_table_test_robospierre (double p_x, double p_y); /* Gloubi, Efrei 2006. */ static const struct robot_t gloubi_robot = { /* Main motors. */ &motor_model_def_re25cll_x10, /* Motors voltage (V). */ 12.0, /* Number of steps on the main motors encoders. */ 500, /* Wheel radius (m). */ 0.02, /* Distance between the wheels (m). */ 0.26, /* Weight of the robot (kg). */ 4.0, /* Distance of the gravity center from the center of motors axis (m). */ 13.0, // approx /* Whether the encoder is mounted on the main motor (false) or not (true). */ 0, 0.0, 0.0, { NULL, NULL }, { 0, 0 }, { 0, 0 }, NULL, NULL, NO_CORNER, NULL }; /* Taz, APBTeam/Efrei 2005. */ static const struct robot_t taz_robot = { /* Main motors. */ &motor_model_def_re25cll_x10, /* Motors voltage (V). */ 12.0, /* Number of steps on the main motors encoders. */ 500, /* Wheel radius (m). */ 0.04, /* Distance between the wheels (m). */ 0.30, /* Weight of the robot (kg). */ 10.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.0, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 0, 0.0, 0.0, { NULL, NULL }, { 0, 0 }, { 0, 0 }, NULL, NULL, NO_CORNER, NULL }; /* TazG, Taz with RE25G motors. */ static const struct robot_t tazg_robot = { /* Main motors. */ &motor_model_def_re25g_x20_25, /* Motors voltage (V). */ 24.0, /* Number of steps on the main motors encoders. */ 500, /* Wheel radius (m). */ 0.04, /* Distance between the wheels (m). */ 0.30, /* Weight of the robot (kg). */ 10.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.0, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 0, 0.0, 0.0, { NULL, NULL }, { 0, 0 }, { 0, 0 }, NULL, NULL, NO_CORNER, NULL }; /* Giboulée, APBTeam 2008. */ static const struct robot_t giboulee_robot = { /* Main motors. */ &motor_model_def_amax32ghp_x16, /* Motors voltage (V). */ 24.0, /* Number of steps on the main motors encoders. */ 2500, /* Wheel radius (m). */ 0.065 / 2, /* Distance between the wheels (m). */ 0.16, /* Weight of the robot (kg). */ 10.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.10, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 1, /** Encoder wheel radius (m). */ 0.063 / 2, /** Distance between the encoders wheels (m). */ 0.28, /** Auxiliary motors, NULL if not present. */ { &motor_model_def_re25cll_x10, NULL }, /** Number of steps for each auxiliary motor encoder. */ { 500, 0 }, /** Load for auxiliary motors (kg.m^2). */ { 0.200 * 0.1 * 0.1, 0 }, /** Sensor update function. */ simu_sensor_update_giboulee, NULL, NO_CORNER, NULL }; /* AquaJim arm model, with a RE40G and a 1:4 + 15:80 ratio gearbox. */ static motor_model_def_t aquajim_arm_model_def = { /* Motor characteristics. */ 317 * (2*M_PI) / 60,/* Speed constant ((rad/s)/V). */ 30.2 / 1000, /* Torque constant (N.m/A). */ 0, /* Bearing friction (N.m/(rad/s)). */ 0.316, /* Terminal resistance (Ohm). */ 0.08 / 1000, /* Terminal inductance (H). */ /* Gearbox characteristics. */ 4.0 * 80.0 / 15.0, /* Gearbox ratio. */ 0.75, /* Gearbox efficiency. */ /* Load characteristics. */ 0.0, /* Load (kg.m^2). */ /* Hardware limits. */ -INFINITY, +INFINITY, }; /* AquaJim, APBTeam 2009. */ static const struct robot_t aquajim_robot = { /* Main motors. */ &motor_model_def_amax32ghp_x16, /* Motors voltage (V). */ 24.0, /* Number of steps on the main motors encoders. */ 2500, /* Wheel radius (m). */ 0.065 / 2, /* Distance between the wheels (m). */ 0.16, /* Weight of the robot (kg). */ 20.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.0, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 1, /** Encoder wheel radius (m). */ 0.063 / 2, /** Distance between the encoders wheels (m). */ 0.28, /** Auxiliary motors, NULL if not present. */ { &aquajim_arm_model_def, &motor_model_def_re25cll_x10 }, /** Number of steps for each auxiliary motor encoder. */ { 250, 250 }, /** Load for auxiliary motors (kg.m^2). */ { 0.05 * 2.5 * 0.06 * 0.06, 0.200 * 0.01 * 0.01 /* Pif */ }, /** Sensor update function. */ simu_sensor_update_aquajim, NULL, NO_CORNER, NULL }; /* Marcel, APBTeam 2010. */ static const struct robot_t marcel_robot = { /* Main motors. */ &motor_model_def_amax32ghp_x16, /* Motors voltage (V). */ 24.0, /* Number of steps on the main motors encoders. */ 2500, /* Wheel radius (m). */ 0.065 / 2, /* Distance between the wheels (m). */ 0.16, /* Weight of the robot (kg). */ 10.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.0, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 1, /** Encoder wheel radius (m). */ 0.063 / 2, /** Distance between the encoders wheels (m). */ 0.28, /** Auxiliary motors, NULL if not present. */ { &motor_model_def_faulhaber_2657_x9_7, &motor_model_def_re25cll_x10 }, /** Number of steps for each auxiliary motor encoder. */ { 256, 250 }, /** Load for auxiliary motors (kg.m^2). */ { 1.0 * 0.01115 * 0.01115, 0.100 * 0.01 * 0.01 /* Pif */ }, /** Sensor update function. */ simu_sensor_update_marcel, NULL, NO_CORNER, /** Initialisation function. */ marcel_robot_init, }; /* Robospierre, APBTeam 2011. */ static const struct robot_t robospierre_robot = { /* Main motors. */ &motor_model_def_faulhaber_2657_x9_7, /* Motors voltage (V). */ 24.0, /* Number of steps on the main motors encoders. */ 2500, /* Wheel radius (m). */ 0.065 / 2, /* Distance between the wheels (m). */ 0.16, /* Weight of the robot (kg). */ 10.0, /* Distance of the gravity center from the center of motors axis (m). */ 0.0, /* Whether the encoder is mounted on the main motor (false) or not (true). */ 1, /** Encoder wheel radius (m). */ 0.063 / 2, /** Distance between the encoders wheels (m). */ 0.28, /** Auxiliary motors, NULL if not present. */ { NULL, NULL }, /** Number of steps for each auxiliary motor encoder. */ { 0, 0 }, /** Load for auxiliary motors (kg.m^2). */ { 0, 0 }, /** Sensor update function. */ NULL, /** Table test function, return false if given robot point is not in * table. */ simu_table_test_robospierre, /** Robot corners, from front left, then clockwise. */ { { 150, 110 }, { 150, -110 }, { -150, -110 }, { -150, 110 } }, /** Initialisation function. */ NULL, }; /* Table of models. */ static const struct { const char *name; const struct robot_t *robot; } models[] = { { "gloubi", &gloubi_robot }, { "taz", &taz_robot }, { "tazg", &tazg_robot }, { "giboulee", &giboulee_robot }, { "aquajim", &aquajim_robot }, { "marcel", &marcel_robot }, { "robospierre", &robospierre_robot }, { 0, 0 } }; /** Get a pointer to a model by name, or return 0. */ const struct robot_t * models_get (const char *name) { int i; for (i = 0; models[i].name; i++) { if (strcmp (models[i].name, name) == 0) return models[i].robot; } return 0; } /** Initialise simulation models. */ void models_init (const struct robot_t *robot, motor_model_t *main_motor_left, motor_model_t *main_motor_right, motor_model_t aux_motor[]) { int i; if (main_motor_left) { main_motor_left->m = *robot->main_motor; main_motor_left->m.J = robot->weight * robot->wheel_r * robot->wheel_r / 2; main_motor_left->h = ECHANT_PERIOD; main_motor_left->d = 1000; } if (main_motor_right) { main_motor_right->m = *robot->main_motor; main_motor_right->m.J = robot->weight * robot->wheel_r * robot->wheel_r / 2; main_motor_right->h = ECHANT_PERIOD; main_motor_right->d = 1000; } if (aux_motor) { for (i = 0; i < AC_ASSERV_AUX_NB; i++) { if (robot->aux_motor[i]) { aux_motor[i].m = *robot->aux_motor[i]; aux_motor[i].m.J = robot->aux_load[i]; aux_motor[i].h = ECHANT_PERIOD; aux_motor[i].d = 1000; } } } if (robot->init) robot->init (robot, main_motor_left, main_motor_right, aux_motor); } /** Update sensors for Giboulee. */ void simu_sensor_update_giboulee (void) { /** Micro-switch sensors. */ static const double sensors[][2] = { { -70.0, 200.0 }, { -70.0, -200.0 }, { 170.0, 0.0 }, }; static const uint8_t sensors_bit[] = { IO_BV (CONTACT_BACK_LEFT_IO), IO_BV (CONTACT_BACK_RIGHT_IO), IO_BV (CONTACT_CENTER_IO), }; static const double table_width = 3000.0, table_height = 2100.0; PINC = 0; unsigned int i; double x, y; for (i = 0; i < UTILS_COUNT (sensors); i++) { /* Compute absolute position. */ simu_compute_absolute_position (sensors[i][0], sensors[i][1], &x, &y); if (x >= 0.0 && x < table_width && y >= 0.0 && y < table_height) PINC |= sensors_bit[i]; } /** Top zero sensor. */ double aa; for (i = 0; i < AC_ASSERV_AUX_NB; i++) { aa = simu_aux_model[i].th / simu_aux_model[i].m.i_G * 3; if (!(cos (aa) > 0 && fabs (sin (aa)) * 80.0 < 7.5)) *aux[i].zero_pin |= aux[i].zero_bv; } } /** Update sensors for AquaJim. */ void simu_sensor_update_aquajim (void) { /** Micro-switch sensors. */ static const double sensors[][2] = { { -150.0, 70.0 }, { -150.0, -70.0 }, { 150.0, 130.0 }, { 150.0, -130.0 }, { 150.0, 0.0 }, }; static const uint8_t sensors_bit[] = { IO_BV (CONTACT_BACK_LEFT_IO), IO_BV (CONTACT_BACK_RIGHT_IO), IO_BV (CONTACT_FRONT_LEFT_IO), IO_BV (CONTACT_FRONT_RIGHT_IO), IO_BV (CONTACT_CENTER_IO), }; static const double table_width = 3000.0, table_height = 2100.0; static const double center_zone_radius = 150.0; PINC = 0; unsigned int i; double x, y, cx, cy, ds; for (i = 0; i < UTILS_COUNT (sensors); i++) { /* Compute absolute position. */ simu_compute_absolute_position (sensors[i][0], sensors[i][1], &x, &y); cx = table_width / 2 - x; cy = table_height / 2 - y; ds = cx * cx + cy * cy; if (x >= 0.0 && x < table_width && y >= 0.0 && y < table_height && ds > center_zone_radius * center_zone_radius) PINC |= sensors_bit[i]; } /** Top zero sensors. */ double aa = simu_aux_model[0].th / simu_aux_model[0].m.i_G /* Almost open. */ + 2 * M_PI / 6 / 10 /* Turn at the next hole. */ - 2 * M_PI / 3 /* Mechanical offset. */ + 2 * M_PI * 0x43e / simu_robot->aux_encoder_steps[0] / simu_aux_model[0].m.i_G; double apos = aa / (2 * M_PI / 3); if (apos - floor (apos) > 0.5) PINC |= IO_BV (CONTACT_AUX0_ZERO_IO); if (simu_aux_model[1].th >= 0) PINC |= IO_BV (CONTACT_AUX1_ZERO_IO); } /** Update sensors for Marcel. */ void simu_sensor_update_marcel (void) { /** Micro-switch sensors. */ static const double sensors[][2] = { { -160.0, 90.0 }, { -160.0, -90.0 }, { 120.0, 155.0 }, { 120.0, -155.0 }, }; static const uint8_t sensors_bit[] = { IO_BV (CONTACT_BACK_LEFT_IO), IO_BV (CONTACT_BACK_RIGHT_IO), IO_BV (CONTACT_FRONT_LEFT_IO), IO_BV (CONTACT_FRONT_RIGHT_IO), }; static const double table_width = 3000.0, table_height = 2100.0; static const double stand_x_min = 1500.0 - 759.5, stand_x_max = 1500.0 + 759.5, stand_y = 2100.0 - 522.0; PINC = 0; unsigned int i; double x, y; for (i = 0; i < UTILS_COUNT (sensors); i++) { /* Compute absolute position. */ simu_compute_absolute_position (sensors[i][0], sensors[i][1], &x, &y); if (x >= 0.0 && x < table_width && y >= 0.0 && y < table_height && (x < stand_x_min || x >= stand_x_max || y < stand_y)) PINC |= sensors_bit[i]; } /** Top zero sensors. */ if (simu_aux_model[1].th < 0) PINC |= IO_BV (CONTACT_AUX1_ZERO_IO); } static void marcel_robot_init (const struct robot_t *robot, struct motor_model_t *main_motor_left, struct motor_model_t *main_motor_right, struct motor_model_t aux_motor[]) { aux_motor[0].m.th_min = 0.0; } /* Table test for Robospierre. */ int simu_table_test_robospierre (double p_x, double p_y) { static const double table_width = 3000.0, table_height = 2100.0; double x, y; simu_compute_absolute_position (p_x, p_y, &x, &y); if (x < 0 || y < 0 || x >= table_width || y >= table_height) return 0; return 1; }