From 74298f8ca11dc8d3b0359d1d4e124d6494c3eeac Mon Sep 17 00:00:00 2001 From: Nicolas Schodet Date: Fri, 10 Apr 2009 01:15:42 +0200 Subject: * digital/avr/modules/usb: - imported LUFA. --- .../Projects/AVRISP_Programmer/AVRISP_Programmer.c | 886 +++++++++++++++++++++ 1 file changed, 886 insertions(+) create mode 100644 digital/avr/modules/usb/lufa/Projects/AVRISP_Programmer/AVRISP_Programmer.c (limited to 'digital/avr/modules/usb/lufa/Projects/AVRISP_Programmer/AVRISP_Programmer.c') diff --git a/digital/avr/modules/usb/lufa/Projects/AVRISP_Programmer/AVRISP_Programmer.c b/digital/avr/modules/usb/lufa/Projects/AVRISP_Programmer/AVRISP_Programmer.c new file mode 100644 index 00000000..4dc18cd6 --- /dev/null +++ b/digital/avr/modules/usb/lufa/Projects/AVRISP_Programmer/AVRISP_Programmer.c @@ -0,0 +1,886 @@ +/* + LUFA Library + Copyright (C) Dean Camera, 2009. + + dean [at] fourwalledcubicle [dot] com + www.fourwalledcubicle.com +*/ + +/* + Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com) + AVR ISP Programmer code Copyright 2009 Opendous Inc. (www.opendous.org) + For more info and usage instructions for this firmware, visit: + http://code.google.com/p/avropendous/wiki/AVR_ISP_Programmer + + Note that this firmware is designed to work with AVRdude: + http://savannah.nongnu.org/projects/avrdude + But should work with other software that supports the AVR910 ISP + programmer or STK200 hardware. + + Permission to use, copy, modify, and distribute this software + and its documentation for any purpose and without fee is hereby + granted, provided that the above copyright notice appear in all + copies and that both that the copyright notice and this + permission notice and warranty disclaimer appear in supporting + documentation, and that the name of the author not be used in + advertising or publicity pertaining to distribution of the + software without specific, written prior permission. + + The author disclaim all warranties with regard to this + software, including all implied warranties of merchantability + and fitness. In no event shall the author be liable for any + special, indirect or consequential damages or any damages + whatsoever resulting from loss of use, data or profits, whether + in an action of contract, negligence or other tortious action, + arising out of or in connection with the use or performance of + this software. +*/ + +/* + Usage: + avrdude -vv -F -P COM7 -c avr910 -p t261 + Note -F flag which overrides signature check and enables programming + of any "In-System Programmable via SPI Port" AVR MCU. Part number, + t261, should be set to your target device. + avrdude -vv -F -P COM7 -c avr910 -p t261 -U flash:w:PROG.hex + PROG.hex is the hex file to program your t261 AVR with + avrdude -vv -F -P COM7 -b 115200 -c avr910 -p t261 -U flash:w:test.hex + The -b 115200 sets the SPI clock to 62.5kHz from the default 125kHz and may + work when the default programming speed fails. + AVROSP.exe -dATtiny261 -cCOM7 -rf + AVRosp is the Open Source AVR ISP Programming Software available from Atmel.com + + Note: on Linux systems, COM7 should be replaced with someting like /dev/ttyACM0 + You can determine this value by running dmesg after plugging in the device + Note: you must RESET the programmer after each use (AVRdude session). + + Note: If you experience errors with older devices, try changing the DELAY defines + + MISO, MOSI, and SCK are connected directly from the AVRopendous board + to the pin of the same functionality on the target. RESET pin on the target + can be connected either to SS (PB0), or PC2. Do not have any other pins + connected - especially HWB pin, to avoid unintentional behaviour. + + AVR910 functionality was overlayed on USBtoSerial functionality. + Keep this in mind when looking over the code. + Default target speed is 125kHz and corresponds to 19200 baud, which + is the default setting for AVRdude. + + Changing "Baud-Rate" will change the SPI speed. Defualt SPI clock speed + is 8Mhz / 4 = 2MHz. 8Mhz is the device clock speed. This is the setting at + 9600 baud. The following is a table of baud-rate vs. SPI Speed that will result + 9600 = 2Mhz + 14400 = 1MHz + 19200 = 125kHz (AVRdude Default) + 38400 = 250kHz + 57600 = 500kHz + 115200 = 62.5kHz + + Before running, you will need to install the INF file that + is located in the project directory. This will enable + Windows to use its inbuilt CDC drivers, negating the need + for special Windows drivers for the device. To install, + right-click the .INF file and choose the Install option. +*/ + +/* TODO: - fix the requirement that a RESET must be performed after each session, which + is only an issue under Windows. Everything works fine under Linux +*/ + +#include "AVRISP_Programmer.h" + +/* Project Tags, for reading out using the ButtLoad project */ +BUTTLOADTAG(ProjName, "LUFA AVR910 ISP Programmer"); +BUTTLOADTAG(BuildTime, __TIME__); +BUTTLOADTAG(BuildDate, __DATE__); +BUTTLOADTAG(LUFAVersion, "LUFA V" LUFA_VERSION_STRING); + + +#define RESETPORT PORTB +#define RESETPIN PB0 +#define RESETPORT2 PORTC +#define RESETPIN2 PC2 +#define CR_HEX '\r' + +#define DELAY_VERYSHORT 0x01 +#define DELAY_SHORT 0x02 +#define DELAY_MEDIUM 0x03 +#define DELAY_LONG 0x05 +#define DELAY_MULTIPLE 0x02 + + +/* AVR Device Codes - Can have a maximum of 14 but can be any you want. + Note that these are completely irrelevent. If AVRdude supports a device, + then that device is programmable. Use -F switch to ignore device codes. */ +#define AVRDEVCODE01 0x55 /* ATtiny12 */ +#define AVRDEVCODE02 0x56 /* ATtiny15 */ +#define AVRDEVCODE03 0x5E /* ATtiny261 */ +#define AVRDEVCODE04 0x76 /* ATmega8 */ +#define AVRDEVCODE05 0x74 /*ATmega16 */ +#define AVRDEVCODE06 0x72 /* ATmega32 */ +#define AVRDEVCODE07 0x45 /* ATmega64 */ +#define AVRDEVCODE08 0x74 /* ATmega644 */ +#define AVRDEVCODE09 0x43 /* ATmega128 */ +#define AVRDEVCODE10 0x63 /* ATmega162 */ +#define AVRDEVCODE11 0x78 /* ATmega169 */ +#define AVRDEVCODE12 0x6C /* AT90S4434 */ +#define AVRDEVCODE13 0x38 /* AT90S8515A */ +#define AVRDEVCODE14 0x65 /* AT90S8555 */ + + +/* Scheduler Task List */ +TASK_LIST +{ + { Task: USB_USBTask , TaskStatus: TASK_STOP }, + { Task: CDC_Task , TaskStatus: TASK_STOP }, +}; + +/* Globals: */ +/** Contains the current baud rate and other settings of the virtual serial port. + * + These values are set by the host via a class-specific request, and the physical USART should be reconfigured to match the + new settings each time they are changed by the host. + */ +CDC_Line_Coding_t LineCoding = { BaudRateBPS: 9600, + CharFormat: OneStopBit, + ParityType: Parity_None, + DataBits: 8 }; + +/** Ring (circular) buffer to hold the RX data - data from the host to the attached device on the serial port. */ +RingBuff_t Rx_Buffer; + +/** Ring (circular) buffer to hold the TX data - data from the attached device on the serial port to the host. */ +RingBuff_t Tx_Buffer; + +/** Flag to indicate if the USART is currently transmitting data from the Rx_Buffer circular buffer. */ +volatile bool Transmitting = false; + + +/* some global variables used throughout */ +uint8_t tempIOreg = 0; +uint8_t tempIOreg2 = 0; +uint8_t tempIOreg3 = 0; +uint8_t tempIOreg4 = 0; +uint8_t dataWidth = 0; +uint8_t firstRun = 1; +uint8_t deviceCode = 0; +uint8_t tempByte = 0; +uint16_t currAddress = 0; +uint16_t timerval = 0; + + + +/** Main program entry point. This routine configures the hardware required by the application, then + starts the scheduler to run the application tasks. + */ +int main(void) +{ + /* Disable watchdog if enabled by bootloader/fuses */ + MCUSR &= ~(1 << WDRF); + wdt_disable(); + + /* Disable Clock Division */ + SetSystemClockPrescaler(0); + + /* Hardware Initialization */ + LEDs_Init(); + ReconfigureSPI(); + // prepare PortB + DDRB = 0; + PORTB = 0; + DDRC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2 + // PC2 is also used for RESET, so set it HIGH initially - note 'P' command sets it to LOW (Active) + PORTC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2 + DDRD = 0; + PORTD = (1 << PB7); // only PB7(HWB) should be High as this is the bootloader pin + // Prepare PortB for SPI - set PB0(^SS), PB1(SCK), PB2(MOSI) as output as well as all other pins except PB3(MISO) + DDRB = (1 << PB0) | (1 << PB1) | (1 << PB2) | (0 << PB3) | (1 << PB4) | (1 << PB5) | (1 << PB6) | (1 << PB7); + PORTB |= (1 << PB0); + // make sure DataFlash devices to not interfere - deselect them by setting PE0 and PE1 HIGH: + PORTE = 0xFF; + DDRE = 0xFF; + + // initialize Timer1 for use in delay function + TCCR1A = 0; + //TCCR1B = (1 << CS10); // no prescaling, use CLK + TCCR1B = ((1 << CS12) | (1 << CS10)); // prescale by CLK/1024 + // 8MHz/1024 = 7813 ticks per second --> ~8 ticks per millisecond (ms) + timerval = TCNT1; // start timer1 + + + /* Ringbuffer Initialization */ + Buffer_Initialize(&Rx_Buffer); + Buffer_Initialize(&Tx_Buffer); + + /* Indicate USB not ready */ + UpdateStatus(Status_USBNotReady); + + /* Initialize Scheduler so that it can be used */ + Scheduler_Init(); + + /* Initialize USB Subsystem */ + USB_Init(); + + /* Scheduling - routine never returns, so put this last in the main function */ + Scheduler_Start(); +} + +/** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs and + starts the library USB task to begin the enumeration and USB management process. + */ +EVENT_HANDLER(USB_Connect) +{ + /* Start USB management task */ + Scheduler_SetTaskMode(USB_USBTask, TASK_RUN); + + /* Indicate USB enumerating */ + UpdateStatus(Status_USBEnumerating); +} + +/** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via + the status LEDs and stops the USB management and CDC management tasks. + */ +EVENT_HANDLER(USB_Disconnect) +{ + /* Stop running CDC and USB management tasks */ + Scheduler_SetTaskMode(CDC_Task, TASK_STOP); + Scheduler_SetTaskMode(USB_USBTask, TASK_STOP); + + /* Indicate USB not ready */ + UpdateStatus(Status_USBNotReady); +} + +/** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration + of the USB device after enumeration - the device endpoints are configured and the CDC management task started. + */ +EVENT_HANDLER(USB_ConfigurationChanged) +{ + /* Setup CDC Notification, Rx and Tx Endpoints */ + Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT, + ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE, + ENDPOINT_BANK_SINGLE); + + Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK, + ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE, + ENDPOINT_BANK_SINGLE); + + Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK, + ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE, + ENDPOINT_BANK_SINGLE); + + /* Indicate USB connected and ready */ + UpdateStatus(Status_USBReady); + + /* Start CDC task */ + Scheduler_SetTaskMode(CDC_Task, TASK_RUN); +} + +/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific + control requests that are not handled internally by the USB library (including the CDC control commands, + which are all issued via the control endpoint), so that they can be handled appropriately for the application. + */ +EVENT_HANDLER(USB_UnhandledControlPacket) +{ + uint8_t* LineCodingData = (uint8_t*)&LineCoding; + + /* Process CDC specific control requests */ + switch (bRequest) + { + case REQ_GetLineEncoding: + if (bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE)) + { + /* Acknowedge the SETUP packet, ready for data transfer */ + Endpoint_ClearSetupReceived(); + + /* Write the line coding data to the control endpoint */ + Endpoint_Write_Control_Stream_LE(LineCodingData, sizeof(LineCoding)); + + /* Finalize the stream transfer to send the last packet or clear the host abort */ + Endpoint_ClearSetupOUT(); + } + + break; + case REQ_SetLineEncoding: + if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE)) + { + /* Acknowedge the SETUP packet, ready for data transfer */ + Endpoint_ClearSetupReceived(); + + /* Read the line coding data in from the host into the global struct */ + Endpoint_Read_Control_Stream_LE(LineCodingData, sizeof(LineCoding)); + + /* Finalize the stream transfer to clear the last packet from the host */ + Endpoint_ClearSetupIN(); + + /* Reconfigure the USART with the new settings */ + ReconfigureSPI(); + } + + break; + case REQ_SetControlLineState: + if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE)) + { +#if 0 + /* NOTE: Here you can read in the line state mask from the host, to get the current state of the output handshake + lines. The mask is read in from the wValue parameter, and can be masked against the CONTROL_LINE_OUT_* masks + to determine the RTS and DTR line states using the following code: + */ + + uint16_t wIndex = Endpoint_Read_Word_LE(); + + // Do something with the given line states in wIndex +#endif + + /* Acknowedge the SETUP packet, ready for data transfer */ + Endpoint_ClearSetupReceived(); + + /* Send an empty packet to acknowedge the command */ + Endpoint_ClearSetupIN(); + } + + break; + } +} + +/** Task to manage CDC data transmission and reception to and from the host, from and to the physical USART. */ +TASK(CDC_Task) +{ + if (USB_IsConnected) + { +#if 0 + /* NOTE: Here you can use the notification endpoint to send back line state changes to the host, for the special RS-232 + handshake signal lines (and some error states), via the CONTROL_LINE_IN_* masks and the following code: + */ + + USB_Notification_Header_t Notification = (USB_Notification_Header_t) + { + NotificationType: (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE), + Notification: NOTIF_SerialState, + wValue: 0, + wIndex: 0, + wLength: sizeof(uint16_t), + }; + + uint16_t LineStateMask; + + // Set LineStateMask here to a mask of CONTROL_LINE_IN_* masks to set the input handshake line states to send to the host + + Endpoint_SelectEndpoint(CDC_NOTIFICATION_EPNUM); + Endpoint_Write_Stream_LE(&Notification, sizeof(Notification)); + Endpoint_Write_Stream_LE(&LineStateMask, sizeof(LineStateMask)); + Endpoint_ClearCurrentBank(); +#endif + + /* Select the Serial Rx Endpoint */ + Endpoint_SelectEndpoint(CDC_RX_EPNUM); + + if (Endpoint_ReadWriteAllowed()) + { + /* Read the received data endpoint into the transmission buffer */ + while (Endpoint_BytesInEndpoint()) + { + /* Wait until the buffer has space for a new character */ + while (!((BUFF_STATICSIZE - Rx_Buffer.Elements))); + + /* Store each character from the endpoint */ + Buffer_StoreElement(&Rx_Buffer, Endpoint_Read_Byte()); + + + + + /* Each time there is an element, check which comand should be + run and if enough data is available to run that command. + There are 1-byte, 2-byte, 3-byte, 4-byte commands, and 5-byte commands + Remember that the "which command" byte counts as 1 */ + if (Rx_Buffer.Elements == 0) { + // do nothing, wait for data + } else { + tempByte = Buffer_PeekElement(&Rx_Buffer); // peek at first element + + /* make sure the issued command and associated data are all ready */ + if (Rx_Buffer.Elements == 1) { // zero data byte command + if ((tempByte == 'P') | (tempByte == 'a') | (tempByte == 'm') | + (tempByte == 'R') | (tempByte == 'd') | (tempByte == 'e') | + (tempByte == 'L') | (tempByte == 's') | (tempByte == 't') | + (tempByte == 'S') | (tempByte == 'V') | (tempByte == 'v') | + (tempByte == 'p') | (tempByte == 'F')) { + processHostSPIRequest(); // command has enough data, process it + } + } else if (Rx_Buffer.Elements == 2) { // one data byte command + if ((tempByte == 'T') | (tempByte == 'c') | (tempByte == 'C') | + (tempByte == 'D') | (tempByte == 'l') | (tempByte == 'f') | + (tempByte == 'x') | (tempByte == 'y')) { + processHostSPIRequest(); // command has enough data, process it + } + } else if (Rx_Buffer.Elements == 3) { // two data byte command + if ((tempByte == 'A') | (tempByte == 'Z')) { + processHostSPIRequest(); // command has enough data, process it + } + } else if (Rx_Buffer.Elements == 4) { // three data byte command + if ((tempByte == ':')) { + processHostSPIRequest(); // command has enough data, process it + } + } else if (Rx_Buffer.Elements == 5) { // four data byte command + if ((tempByte == '.')) { + processHostSPIRequest(); // command has enough data, process it + } + } else { + // do nothing + } + } + + + + } + + /* Clear the endpoint buffer */ + Endpoint_ClearCurrentBank(); + } + + /* Check if Rx buffer contains data */ + if (Rx_Buffer.Elements) + { + /* Initiate the transmission of the buffer contents if USART idle */ + if (!(Transmitting)) + { + Transmitting = true; + /* The following flushes the receive buffer to prepare for new data and commands */ + /* Need to flush the buffer as the command byte which is peeked above needs to be */ + /* dealt with, otherwise the command bytes will overflow the buffer eventually */ + //Buffer_GetElement(&Rx_Buffer); // works also + Buffer_Initialize(&Rx_Buffer); + } + } + + /* Select the Serial Tx Endpoint */ + Endpoint_SelectEndpoint(CDC_TX_EPNUM); + + /* Check if the Tx buffer contains anything to be sent to the host */ + if (Tx_Buffer.Elements) + { + /* Wait until Serial Tx Endpoint Ready for Read/Write */ + while (!(Endpoint_ReadWriteAllowed())); + + /* Check before sending the data if the endpoint is completely full */ + bool IsFull = (Endpoint_BytesInEndpoint() == CDC_TXRX_EPSIZE); + + /* Write the transmission buffer contents to the received data endpoint */ + while (Tx_Buffer.Elements && (Endpoint_BytesInEndpoint() < CDC_TXRX_EPSIZE)) + Endpoint_Write_Byte(Buffer_GetElement(&Tx_Buffer)); + + /* Send the data */ + Endpoint_ClearCurrentBank(); + + /* If a full endpoint was sent, we need to send an empty packet afterwards to terminate the transfer */ + if (IsFull) + { + /* Wait until Serial Tx Endpoint Ready for Read/Write */ + while (!(Endpoint_ReadWriteAllowed())); + + /* Send an empty packet to terminate the transfer */ + Endpoint_ClearCurrentBank(); + } + } + } +} + + + +/** Function to manage status updates to the user. This is done via LEDs on the given board, if available, but may be changed to + log to a serial port, or anything else that is suitable for status updates. + * + \param CurrentStatus Current status of the system, from the USBtoSerial_StatusCodes_t enum + */ +void UpdateStatus(uint8_t CurrentStatus) +{ + uint8_t LEDMask = LEDS_NO_LEDS; + + /* Set the LED mask to the appropriate LED mask based on the given status code */ + switch (CurrentStatus) + { + case Status_USBNotReady: + LEDMask = (LEDS_LED1); + break; + case Status_USBEnumerating: + LEDMask = (LEDS_LED1 | LEDS_LED2); + break; + case Status_USBReady: + LEDMask = (LEDS_LED2 | LEDS_LED4); + break; + } + + /* Set the board LEDs to the new LED mask */ + LEDs_SetAllLEDs(LEDMask); +} + + +/** Reconfigures SPI to match the current serial port settings issued by the host. */ +void ReconfigureSPI(void) +{ + uint8_t SPCRmask = (1 << SPE) | (1 << MSTR); // always enable SPI as Master + uint8_t SPSRmask = 0; + + /* Determine data width */ + if (LineCoding.ParityType == Parity_Odd) { + dataWidth = 16; + } else if (LineCoding.ParityType == Parity_Even) { + dataWidth = 32; + } else if (LineCoding.ParityType == Parity_None) { + dataWidth = 8; + } + + /* Determine stop bits - 1.5 stop bits is set as 1 stop bit due to hardware limitations */ + /* For SPI, determine whether format is LSB or MSB */ + if (LineCoding.CharFormat == TwoStopBits) { + SPCRmask |= (1 << DORD); + } else if (LineCoding.CharFormat == OneStopBit) { + SPCRmask |= (0 << DORD); + } + + /* Determine data size - 5, 6, 7, or 8 bits are supported */ + /* Changing line coding changes SPI Mode + CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) SPI-Mode0 == 8 bits line coding + CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) SPI-Mode1 == 7 bits line coding + CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) SPI-Mode2 == 6 bits line coding + CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) SPI-Mode3 == 5 bits line coding + */ + if (LineCoding.DataBits == 5) { + SPCRmask |= ((1 << CPOL) | (1 << CPHA)); + } else if (LineCoding.DataBits == 6) { + SPCRmask |= ((1 << CPOL) | (0 << CPHA)); + } else if (LineCoding.DataBits == 7) { + SPCRmask |= ((0 << CPOL) | (1 << CPHA)); + } else if (LineCoding.DataBits == 8) { + SPCRmask |= ((0 << CPOL) | (0 << CPHA)); + } + + + /* Set the USART baud rate register to the desired baud rate value */ + /* also alter the SPI speed via value of baud rate */ + if (LineCoding.BaudRateBPS == 9600) { // 2Mhz SPI (Fosc / 4) + SPCRmask |= ((0 << SPR1) | (0 << SPR0)); + SPSRmask |= (0 << SPI2X); + } else if (LineCoding.BaudRateBPS == 14400) { // 1Mhz SPI (Fosc / 8) + SPCRmask |= ((0 << SPR1) | (1 << SPR0)); + SPSRmask |= (1 << SPI2X); + } else if (LineCoding.BaudRateBPS == 57600) { // 500kHz SPI (Fosc / 16) + SPCRmask |= ((0 << SPR1) | (1 << SPR0)); + SPSRmask |= (0 << SPI2X); + } else if (LineCoding.BaudRateBPS == 38400) { // 250kHz SPI (Fosc / 32) + SPCRmask |= ((1 << SPR1) | (0 << SPR0)); + SPSRmask |= (1 << SPI2X); + } else if (LineCoding.BaudRateBPS == 19200) { // 125kHz SPI (Fosc / 64) + SPCRmask |= ((1 << SPR1) | (0 << SPR0)); + SPSRmask |= (0 << SPI2X); + } else if (LineCoding.BaudRateBPS == 115200) { // 62.5kHz SPI (Fosc / 128) + SPCRmask |= ((1 << SPR1) | (1 << SPR0)); + SPSRmask |= (0 << SPI2X); + } + + SPCR = SPCRmask; + SPSR = SPSRmask; + + // only read if first run + if (firstRun) { + tempIOreg = SPSR; //need to read to initiliaze + tempIOreg = SPDR; //need to read to initiliaze + firstRun = 0; + } + +} + + +/* process data according to AVR910 protocol */ +void processHostSPIRequest(void) { + + uint8_t readByte1 = 0; + uint8_t readByte2 = 0; + uint8_t readByte3 = 0; + uint8_t readByte4 = 0; + uint8_t firstByte = 0; + + /* Taken from a90isp_ver23.asm: + +-------------+------------+------+ + ;* Commands | Host writes | Host reads | | + ;* -------- +-----+-------+------+-----+ | + ;* | ID | data | data | | Note | + ;* +-----------------------------------+-----+-------+------+-----+------+ + ;* | Enter programming mode | 'P' | | | 13d | 1 | + ;* | Report autoincrement address | 'a' | | | 'Y' | | + ;* | Set address | 'A' | ah al | | 13d | 2 | + ;* | Write program memory, low byte | 'c' | dd | | 13d | 3 | + ;* | Write program memory, high byte | 'C' | dd | | 13d | 3 | + ;* | Issue Page Write | 'm' | | | 13d | | + ;* | Read program memory | 'R' | |dd(dd)| | 4 | + ;* | Write data memory | 'D' | dd | | 13d | | + ;* | Read data memory | 'd' | | dd | | | + ;* | Chip erase | 'e' | | | 13d | | + ;* | Write lock bits | 'l' | dd | | 13d | | + ;* | Write fuse bits | 'f' | dd | | 13d | 11 | + ;* | Read fuse and lock bits | 'F' | | dd | | 11 | + ;* | Leave programming mode | 'L' | | | 13d | 5 | + ;* | Select device type | 'T' | dd | | 13d | 6 | + ;* | Read signature bytes | 's' | | 3*dd | | | + ;* | Return supported device codes | 't' | | n*dd | 00d | 7 | + ;* | Return software identifier | 'S' | | s[7] | | 8 | + ;* | Return sofware version | 'V' | |dd dd | | 9 | + ;* | Return hardware version | 'v' | |dd dd | | 9 | + ;* | Return programmer type | 'p' | | dd | | 10 | + ;* | Set LED | 'x' | dd | | 13d | 12 | + ;* | Clear LED | 'y' | dd | | 13d | 12 | + ;* | Universial command | ':' | 3*dd | dd | 13d | | + ;* | New universal command | '.' | 4*dd | dd | 13d | | + ;* | Special test command | 'Z' | 2*dd | dd | | | + */ + + firstByte = Buffer_GetElement(&Rx_Buffer); + Buffer_Initialize(&Tx_Buffer); // make sure the buffer is clear before proceeding + + if (firstByte == 'P') { // enter Programming mode + // enable SPI -- already done + // enter programming mode on target: + //PORTB = 0; // set clock to zero + RESETPORT = (1 << RESETPIN); // set RESET pin on target to 1 + RESETPORT2 = (1 << RESETPIN2); + delay_ms(DELAY_SHORT); + //RESETPORT = (RESETPORT & ~(1 << RESETPIN)); // set RESET pin on target to 0 - Active + RESETPORT = 0x00; + RESETPORT2 = 0; + delay_ms(DELAY_SHORT); + SPI_SendByte(0xAC); + SPI_SendByte(0x53); + SPI_SendByte(0x00); + SPI_SendByte(0x00); + delay_ms(DELAY_VERYSHORT); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'T') { // Select device type + deviceCode = Buffer_GetElement(&Rx_Buffer); // set device type + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'a') { // Report autoincrement address + Buffer_StoreElement(&Tx_Buffer, 'Y'); // return 'Y' - Auto-increment enabled + + } else if (firstByte == 'A') { //Load Address + // get two bytes over serial and set currAddress to them + readByte1 = Buffer_GetElement(&Rx_Buffer); // high byte + readByte2 = Buffer_GetElement(&Rx_Buffer); // low byte + currAddress = (readByte1 << 8) | (readByte2); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'c') { // Write program memory, low byte + // send 4 bytes over SPI; 0x40, then Address High Byte, then Low, then data + readByte1 = Buffer_GetElement(&Rx_Buffer); + SPI_SendByte(0x40); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + SPI_SendByte(readByte1); // data + delay_ms(DELAY_MEDIUM); // certain MCUs require a delay of about 24585 cycles + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'C') { // Write program memory, high byte + // send 4 bytes over SPI; 0x48, then Address High Byte, then Low, then data + readByte1 = Buffer_GetElement(&Rx_Buffer); + SPI_SendByte(0x48); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + SPI_SendByte(readByte1); // data + currAddress++; // increment currAddress + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'm') { // Write Program Memory Page + // send 4 bytes over SPI; 0x4c, then Address High Byte, then Low, then 0x00 + SPI_SendByte(0x4C); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + SPI_SendByte(0x00); + delay_ms(DELAY_LONG); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'R') { // Read Program Memory + // send 4 bytes over SPI; 0x28, then Address High Byte, then Low, then send back read data from 4th byte over serial + SPI_SendByte(0x28); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + readByte1 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte1); + // send 4 bytes over SPI; 0x20, then Address High Byte, then Low, then send back read data from 4th byte over serial + SPI_SendByte(0x20); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + readByte2 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte2); + currAddress++; // increment currAddress + + } else if (firstByte == 'D') { // Write Data Memory + // send 4 bytes over SPI; 0xc0, then Address High Byte, then Low, then data + readByte1 = Buffer_GetElement(&Rx_Buffer); + SPI_SendByte(0xC0); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + SPI_SendByte(readByte1); // data + delay_ms(DELAY_MEDIUM); + currAddress++; // increment currAddress + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'd') { // Read Data Memory + // send 4 bytes over SPI; 0xa0, then Address High Byte, then Low, then send back read data from 4th byte over serial + SPI_SendByte(0xA0); + SPI_SendByte((currAddress >> 8)); // high byte + SPI_SendByte((currAddress)); // low byte + readByte1 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte1); + currAddress++; // increment currAddress + + } else if (firstByte == 'e') { // erase the target device + // send 4 bytes over SPI; 0xac, 0x80, 0x04, 0x00 + SPI_SendByte(0xAC); + SPI_SendByte(0x80); + SPI_SendByte(0x04); + SPI_SendByte(0x00); + delay_ms(DELAY_LONG); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'l') { // write lock bits + // send 4 bytes over SPI; 0xac, [andi s_data 0x06], 0xe0, 0x00 + readByte1 = Buffer_GetElement(&Rx_Buffer); // read in lock bits data + SPI_SendByte(0xAC); + SPI_SendByte(((0x06 & readByte1) | 0xE0)); // TODO - is this correct??? + SPI_SendByte(0x00); + SPI_SendByte(0x00); + delay_ms(DELAY_MEDIUM); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'f') { // write fuse bits + // ignore this command, but need to remove data from the receive buffer + readByte1 = Buffer_GetElement(&Rx_Buffer); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'L') { // leave programming mode + RESETPORT |= (1 << RESETPIN); // set RESET pin on target to 1 + RESETPORT2 |= (1 << RESETPIN2); // set RESET pin on target to 1 + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 's') { // Read signature bytes + // send 4 bytes over SPI; 0x30, 0x00, 0x02, read and send last byte over serial + SPI_SendByte(0x30); + SPI_SendByte(0x00); + SPI_SendByte(0x02); + readByte1 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte1); + SPI_SendByte(0x30); + SPI_SendByte(0x00); + SPI_SendByte(0x01); + readByte1 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte1); + SPI_SendByte(0x30); + SPI_SendByte(0x00); + SPI_SendByte(0x00); + readByte1 = SPI_TransferByte(0x00); // read in data + Buffer_StoreElement(&Tx_Buffer, readByte1); + + } else if (firstByte == 't') { // Return supported device codes + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE01); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE02); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE03); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE04); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE05); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE06); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE07); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE08); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE09); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE10); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE11); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE12); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE13); + Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE14); + Buffer_StoreElement(&Tx_Buffer, 0x00); + + } else if (firstByte == 'S') { // Return software identifier + // return string[7] with "AVR ISP" + Buffer_StoreElement(&Tx_Buffer, 'A'); + Buffer_StoreElement(&Tx_Buffer, 'V'); + Buffer_StoreElement(&Tx_Buffer, 'R'); + Buffer_StoreElement(&Tx_Buffer, 0x20); + Buffer_StoreElement(&Tx_Buffer, 'I'); + Buffer_StoreElement(&Tx_Buffer, 'S'); + Buffer_StoreElement(&Tx_Buffer, 'P'); + + } else if (firstByte == 'V') { // Return sofware version + //return two bytes, software Major then Minor + Buffer_StoreElement(&Tx_Buffer, '2'); + Buffer_StoreElement(&Tx_Buffer, '3'); + + } else if (firstByte == 'v') { // Return hardware version + //return two bytes, hardware Major then Minor + Buffer_StoreElement(&Tx_Buffer, ('1')); + Buffer_StoreElement(&Tx_Buffer, ('0')); + + } else if (firstByte == 'p') { // Return programmer type + // return 'S' for Serial Programmer + Buffer_StoreElement(&Tx_Buffer, 'S'); + + } else if (firstByte == 'x') { // set LED + // ignore this command, but need to remove data from the receive buffer + readByte1 = Buffer_GetElement(&Rx_Buffer); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'y') { // clear LED + // ignore this command, but need to remove data from the receive buffer + readByte1 = Buffer_GetElement(&Rx_Buffer); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == ':') { // Universal Command + // get 3 bytes over serial + readByte1 = Buffer_GetElement(&Rx_Buffer); + readByte2 = Buffer_GetElement(&Rx_Buffer); + readByte3 = Buffer_GetElement(&Rx_Buffer); + SPI_SendByte(readByte1); + SPI_SendByte(readByte2); + SPI_SendByte(readByte3); + readByte1 = SPI_TransferByte(0x00); + Buffer_StoreElement(&Tx_Buffer, readByte1); + delay_ms(DELAY_MEDIUM); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == '.') { // New Universal Command + // get 4 bytes over serial + readByte1 = Buffer_GetElement(&Rx_Buffer); + readByte2 = Buffer_GetElement(&Rx_Buffer); + readByte3 = Buffer_GetElement(&Rx_Buffer); + readByte4 = Buffer_GetElement(&Rx_Buffer); + SPI_SendByte(readByte1); + SPI_SendByte(readByte2); + SPI_SendByte(readByte3); + readByte1 = SPI_TransferByte(readByte4); + Buffer_StoreElement(&Tx_Buffer, readByte1); + delay_ms(DELAY_MEDIUM); + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + + } else if (firstByte == 'Z') { // Special test command + // do nothing, but need to remove data from the receive buffer + readByte1 = Buffer_GetElement(&Rx_Buffer); + readByte2 = Buffer_GetElement(&Rx_Buffer); + + } else { + // do nothing, but need to return with a carriage return + Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful + } +} + + +void delay_ms(uint8_t dly) { + uint16_t endtime = 0; + + endtime = TCNT1; + if (endtime > 63486) { + endtime = (dly * DELAY_MULTIPLE); + } else { + endtime += (dly * DELAY_MULTIPLE); + } + + timerval = TCNT1; + while (timerval < endtime) { + timerval = TCNT1; + } +} -- cgit v1.2.3