/* * This file is part of the libopencm3 project. * * Copyright (C) 2013 Karl Palsson * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include #include #include #include #include #include #include #include #include #define LED_DISCOVERY_USER_PORT GPIOC #define LED_DISCOVERY_USER_PIN GPIO8 #define USART_CONSOLE USART2 void clock_setup(void) { rcc_clock_setup_in_hsi_out_24mhz(); /* Enable clocks for USART2 and DAC*/ rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_USART2EN); rcc_peripheral_enable_clock(&RCC_APB1ENR, RCC_APB1ENR_DACEN); /* and the ADC and IO ports */ rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPAEN); rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_IOPCEN); rcc_peripheral_enable_clock(&RCC_APB2ENR, RCC_APB2ENR_ADC1EN); } void usart_setup(void) { gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO_USART2_TX); usart_set_baudrate(USART_CONSOLE, 115200); usart_set_databits(USART_CONSOLE, 8); usart_set_stopbits(USART_CONSOLE, USART_STOPBITS_1); usart_set_mode(USART_CONSOLE, USART_MODE_TX); usart_set_parity(USART_CONSOLE, USART_PARITY_NONE); usart_set_flow_control(USART_CONSOLE, USART_FLOWCONTROL_NONE); /* Finally enable the USART. */ usart_enable(USART_CONSOLE); } /** * Use USART_CONSOLE as a console. * This is a syscall for newlib * @param file * @param ptr * @param len * @return */ int _write(int file, char *ptr, int len) { int i; if (file == STDOUT_FILENO || file == STDERR_FILENO) { for (i = 0; i < len; i++) { if (ptr[i] == '\n') { usart_send_blocking(USART_CONSOLE, '\r'); } usart_send_blocking(USART_CONSOLE, ptr[i]); } return i; } errno = EIO; return -1; } void adc_setup(void) { gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO0); gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_ANALOG, GPIO1); /* Make sure the ADC doesn't run during config. */ adc_off(ADC1); /* We configure everything for one single conversion. */ adc_disable_scan_mode(ADC1); adc_set_single_conversion_mode(ADC1); adc_disable_external_trigger_regular(ADC1); adc_set_right_aligned(ADC1); adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28DOT5CYC); adc_power_on(ADC1); /* Wait for ADC starting up. */ int i; for (i = 0; i < 800000; i++) /* Wait a bit. */ __asm__("nop"); adc_reset_calibration(ADC1); adc_calibration(ADC1); } void dac_setup(void) { gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO5); dac_disable(CHANNEL_2); dac_disable_waveform_generation(CHANNEL_2); dac_enable(CHANNEL_2); dac_set_trigger_source(DAC_CR_TSEL2_SW); } u16 read_adc_naiive(u8 channel) { u8 channel_array[16]; channel_array[0] = channel; adc_set_regular_sequence(ADC1, 1, channel_array); adc_start_conversion_direct(ADC1); while (!adc_eoc(ADC1)); u16 reg16 = adc_read_regular(ADC1); return reg16; } int main(void) { int i; int j = 0; clock_setup(); usart_setup(); printf("hi guys!\n"); adc_setup(); dac_setup(); gpio_set_mode(LED_DISCOVERY_USER_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, LED_DISCOVERY_USER_PIN); while (1) { u16 input_adc0 = read_adc_naiive(0); u16 target = input_adc0 / 2; dac_load_data_buffer_single(target, RIGHT12, CHANNEL_2); dac_software_trigger(CHANNEL_2); u16 input_adc1 = read_adc_naiive(1); printf("tick: %d: adc0= %u, target adc1=%d, adc1=%d\n", j++, input_adc0, target, input_adc1); gpio_toggle(LED_DISCOVERY_USER_PORT, LED_DISCOVERY_USER_PIN); /* LED on/off */ for (i = 0; i < 1000000; i++) /* Wait a bit. */ __asm__("NOP"); } return 0; }