summaryrefslogtreecommitdiffhomepage
path: root/digital/asserv/src/asserv/simu.host.c
blob: d572d24b84af2d31ce5d1dbee6f1e0901383573d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* simu.host.c */
/* asserv - Position & speed motor control on AVR. {{{
 *
 * Copyright (C) 2006 Nicolas Schodet
 *
 * APBTeam:
 *        Web: http://apbteam.org/
 *      Email: team AT apbteam DOT org
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * }}} */
#include "common.h"
#include "simu.host.h"

#include "modules/host/host.h"
#include "modules/utils/utils.h"

#include <math.h>
#include <stdlib.h>
#include <stdio.h>

#include "pwm.h"

#include "motor_model.host.h"
#include "models.host.h"

/** Simulate some AVR regs. */
uint8_t DDRF, PORTC, PORTD, PORTE, PORTF, PORTG, PINC;

/** Overall counter values. */
uint16_t counter_left, counter_right;
/** Counter differences since last update.
 * Maximum of 9 significant bits, sign included. */
int16_t counter_left_diff, counter_right_diff;

/** PWM values, this is an error if absolute value is greater than the
 * maximum. */
int16_t pwm_left, pwm_right;
/** PWM reverse direction, only set pwm dir bits or you will get weird results
 * on port B. */
uint8_t pwm_dir;

struct motor_t simu_left_model, simu_right_model;

/** Computed simulated position (mm). */
double simu_pos_x, simu_pos_y, simu_pos_a;

/** Distance between wheels. */
double simu_footing;

/** Initialise simulation. */
static void
simu_init (void)
{
    int argc;
    char **argv;
    const struct robot_t *m;
    host_get_program_arguments (&argc, &argv);
    if (argc != 1)
      {
	fprintf (stderr, "need model name as first argument\n");
	exit (1);
      }
    m = models_get (argv[0]);
    if (!m)
      {
	fprintf (stderr, "unknown model name: %s\n", argv[0]);
	exit (1);
      }
    simu_left_model = *m->motor;
    simu_right_model = *m->motor;
    simu_footing = m->footing;
    simu_pos_x = simu_pos_y = 0;
}

/** Update simulation position. */
static void
simu_pos_update (double dl, double dr)
{
    double d = 0.5 * (dl + dr);
    double da = (dr - dl) / simu_footing;
    double na = simu_pos_a + da;
    if (da < 0.0001 && da > -0.0001)
      {
	/* Avoid a division by zero when angle is too small. */
	double a = simu_pos_a + da * 0.5;
	simu_pos_x += d * cos (a);
	simu_pos_y += d * sin (a);
      }
    else
      {
	/* Radius of turn is d / da. */
	simu_pos_x += (sin (na) - sin (simu_pos_a)) * d / da;
	simu_pos_y += (cos (simu_pos_a) - cos (na)) * d / da;
      }
    simu_pos_a = na;
}

/** Do a simulation step. */
static void
simu_step (void)
{
    double old_left_th, old_right_th;
    /* Convert pwm value into voltage. */
    assert (pwm_left >= -PWM_MAX && pwm_left <= PWM_MAX);
    assert (pwm_right >= -PWM_MAX && pwm_right <= PWM_MAX);
    simu_left_model.u = (double) (pwm_left + 1) / (PWM_MAX + 1);
    simu_right_model.u = (double) (pwm_right + 1) / (PWM_MAX + 1);
    /* Make one step. */
    old_left_th = simu_left_model.th;
    old_right_th = simu_right_model.th;
    motor_model_step (&simu_left_model);
    motor_model_step (&simu_right_model);
    /* Modify counters. */
    counter_left_diff = (simu_left_model.th - old_left_th) / (2*M_PI)
        * 500 * simu_left_model.i_G;
    counter_left += counter_left_diff;
    counter_right_diff = (simu_right_model.th - old_right_th) / (2*M_PI)
        * 500 * simu_right_model.i_G;
    counter_right += counter_right_diff;
    /* Update position */
    simu_pos_update ((simu_left_model.th - old_left_th)
		     * simu_left_model.i_G * simu_left_model.w_r * 1000,
		     (simu_right_model.th - old_right_th)
		     * simu_right_model.i_G * simu_right_model.w_r * 1000);
}

/** Initialise the timer. */
void
timer_init (void)
{
    simu_init ();
}

/** Wait for timer overflow. */
void
timer_wait (void)
{
    simu_step ();
}

/** Read timer value. Used for performance analysis. */
uint8_t
timer_read (void)
{
    return 0;
}

/** Initialize the counters. */
void
counter_init (void)
{
}

/** Update overall counter values and compute diffs. */
void
counter_update (void)
{
}

/** Initialise PWM generator. */
void
pwm_init (void)
{
}

/** Update the hardware PWM values. */
void
pwm_update (void)
{
}

void
eeprom_read_params (void)
{
}

void
eeprom_write_params (void)
{
}

void
eeprom_clear_params (void)
{
}

void
pwm_reverse (uint8_t left, uint8_t right)
{
}