/* simu.host.c */ /* asserv - Position & speed motor control on AVR. {{{ * * Copyright (C) 2006 Nicolas Schodet * * APBTeam: * Web: http://apbteam.org/ * Email: team AT apbteam DOT org * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * }}} */ #include "common.h" #include "simu.host.h" #include "modules/host/host.h" #include "modules/host/mex.h" #include "modules/utils/utils.h" #include "modules/math/fixed/fixed.h" #include "io.h" #include #include #include #include #include "pwm.h" #include "aux.h" #include "contacts.h" #include "motor_model.host.h" #include "models.host.h" /** Simulate some AVR regs. */ uint8_t DDRF, PORTC, PORTD, PORTE, PORTF, PORTG, PINC; /** Overall counter values. */ uint16_t counter_left, counter_right, counter_aux[AC_ASSERV_AUX_NB]; /** Counter differences since last update. * Maximum of 9 significant bits, sign included. */ int16_t counter_left_diff, counter_right_diff, counter_aux_diff[AC_ASSERV_AUX_NB]; /** Overall uncorrected counter values. */ static int32_t counter_right_raw; /** Correction factor (f8.24). */ uint32_t counter_right_correction = 1L << 24; /** PWM control states. */ struct pwm_t pwm_left = PWM_INIT_FOR (pwm_left); struct pwm_t pwm_right = PWM_INIT_FOR (pwm_right); struct pwm_t pwm_aux[AC_ASSERV_AUX_NB] = { PWM_INIT_FOR (pwm_aux0), PWM_INIT_FOR (pwm_aux1) }; /** PWM reverse directions. */ uint8_t pwm_reverse; /* Robot model. */ const struct robot_t *simu_robot; /** Motor models. */ struct motor_t simu_left_model, simu_right_model, simu_aux_model[AC_ASSERV_AUX_NB]; /** Computed simulated position (mm, rad). */ double simu_pos_x, simu_pos_y, simu_pos_a; /** Full counter values. */ uint32_t simu_counter_left, simu_counter_right, simu_counter_aux[AC_ASSERV_AUX_NB]; double simu_counter_left_th, simu_counter_right_th; /** Use mex. */ int simu_mex; /** Initialise simulation. */ static void simu_init (void) { int argc; char **argv; host_get_program_arguments (&argc, &argv); if (argc == 2 && strcmp (argv[0], "-m") == 0) { simu_mex = 1; mex_node_connect (); argc--; argv++; } if (argc != 1) { fprintf (stderr, "Syntax: asserv.host [-m] model\n"); exit (1); } simu_robot = models_get (argv[0]); if (!simu_robot) { fprintf (stderr, "unknown model name: %s\n", argv[0]); exit (1); } models_init (simu_robot, &simu_left_model, &simu_right_model, simu_aux_model); simu_pos_x = simu_pos_y = simu_pos_a = 0; } /** Update simulation position. */ static void simu_pos_update (double dl, double dr, double footing) { double d = 0.5 * (dl + dr); double da = (dr - dl) / footing; double na = simu_pos_a + da; if (da < 0.0001 && da > -0.0001) { /* Avoid a division by zero when angle is too small. */ double a = simu_pos_a + da * 0.5; simu_pos_x += d * cos (a); simu_pos_y += d * sin (a); } else { /* Radius of turn is d / da. */ simu_pos_x += (sin (na) - sin (simu_pos_a)) * d / da; simu_pos_y += (cos (simu_pos_a) - cos (na)) * d / da; } simu_pos_a = na; } /** Update sensors for Giboulee. */ void simu_sensor_update_giboulee (void) { /** Micro-switch sensors. */ static const double sensors[][2] = { { -70.0, 200.0 }, { -70.0, -200.0 }, { 170.0, 0.0 }, }; static const uint8_t sensors_bit[] = { IO_BV (CONTACT_BACK_LEFT_IO), IO_BV (CONTACT_BACK_RIGHT_IO), IO_BV (CONTACT_CENTER_IO), }; static const double table_width = 3000.0, table_height = 2100.0; PINC = 0; unsigned int i; double x, y; for (i = 0; i < UTILS_COUNT (sensors); i++) { /* Compute absolute position. */ x = simu_pos_x + cos (simu_pos_a) * sensors[i][0] - sin (simu_pos_a) * sensors[i][1]; y = simu_pos_y + sin (simu_pos_a) * sensors[i][0] + cos (simu_pos_a) * sensors[i][1]; if (x >= 0.0 && x < table_width && y >= 0.0 && y < table_height) PINC |= sensors_bit[i]; } /** Top zero sensor. */ double aa; for (i = 0; i < AC_ASSERV_AUX_NB; i++) { aa = simu_aux_model[i].th / simu_aux_model[i].m.i_G * 3; if (!(cos (aa) > 0 && fabs (sin (aa)) * 80.0 < 7.5)) *aux[i].zero_pin |= aux[i].zero_bv; } } /** Update sensors for AquaJim. */ void simu_sensor_update_aquajim (void) { /** Micro-switch sensors. */ static const double sensors[][2] = { { -150.0, 150.0 }, { -150.0, -150.0 }, { 150.0, 150.0 }, { 150.0, -150.0 }, { 150.0, 0.0 }, }; static const uint8_t sensors_bit[] = { IO_BV (CONTACT_BACK_LEFT_IO), IO_BV (CONTACT_BACK_RIGHT_IO), IO_BV (CONTACT_FRONT_LEFT_IO), IO_BV (CONTACT_FRONT_RIGHT_IO), IO_BV (CONTACT_CENTER_IO), }; static const double table_width = 3000.0, table_height = 2100.0; static const double center_zone_radius = 150.0; PINC = 0; unsigned int i; double x, y, cx, cy, ds; for (i = 0; i < UTILS_COUNT (sensors); i++) { /* Compute absolute position. */ x = simu_pos_x + cos (simu_pos_a) * sensors[i][0] - sin (simu_pos_a) * sensors[i][1]; y = simu_pos_y + sin (simu_pos_a) * sensors[i][0] + cos (simu_pos_a) * sensors[i][1]; cx = table_width / 2 - x; cy = table_height / 2 - y; ds = cx * cx + cy * cy; if (x >= 0.0 && x < table_width && y >= 0.0 && y < table_height && ds > center_zone_radius * center_zone_radius) PINC |= sensors_bit[i]; } /** Top zero sensors. */ double aa = simu_aux_model[0].th / simu_aux_model[0].m.i_G; double apos = aa / (2 * M_PI / 3); if (apos - floor (apos) > 0.5) PINC |= IO_BV (CONTACT_AUX0_ZERO_IO); if (simu_aux_model[1].th >= 0) PINC |= IO_BV (CONTACT_AUX1_ZERO_IO); } /** Do a simulation step. */ static void simu_step (void) { int i; double old_left_th, old_right_th, old_aux_th[AC_ASSERV_AUX_NB]; /* Convert pwm value into voltage. */ simu_left_model.u = simu_left_model.m.u_max * ((double) pwm_left.cur / (PWM_MAX + 1)); simu_right_model.u = simu_right_model.m.u_max * ((double) pwm_right.cur / (PWM_MAX + 1)); for (i = 0; i < AC_ASSERV_AUX_NB; i++) simu_aux_model[i].u = simu_aux_model[i].m.u_max * ((double) pwm_aux[i].cur / (PWM_MAX + 1)); /* Make one step. */ old_left_th = simu_left_model.th; old_right_th = simu_right_model.th; motor_model_step (&simu_left_model); motor_model_step (&simu_right_model); for (i = 0; i < AC_ASSERV_AUX_NB; i++) { old_aux_th[i] = simu_aux_model[i].th; if (simu_robot->aux_motor[i]) motor_model_step (&simu_aux_model[i]); } /* Modify counters. */ uint32_t counter_left_new; uint32_t counter_right_new; if (!simu_robot->encoder_separated) { counter_left_new = simu_left_model.th / (2*M_PI) * simu_robot->main_encoder_steps; counter_right_new = simu_right_model.th / (2*M_PI) * simu_robot->main_encoder_steps; } else { /* Thanks Thalès. */ double left_diff = (simu_left_model.th - old_left_th) / simu_left_model.m.i_G * simu_robot->wheel_r; double right_diff = (simu_right_model.th - old_right_th) / simu_right_model.m.i_G * simu_robot->wheel_r; double sum = left_diff + right_diff; double diff = (left_diff - right_diff) * (simu_robot->encoder_footing / simu_robot->footing); double left_enc_diff = 0.5 * (sum + diff); double right_enc_diff = 0.5 * (sum - diff); simu_counter_left_th += left_enc_diff / simu_robot->encoder_wheel_r; simu_counter_right_th += right_enc_diff / simu_robot->encoder_wheel_r; counter_left_new = simu_counter_left_th / (2*M_PI) * simu_robot->main_encoder_steps; counter_right_new = simu_counter_right_th / (2*M_PI) * simu_robot->main_encoder_steps; } /* Update an integer counter. */ counter_left_diff = counter_left_new - simu_counter_left; counter_left += counter_left_diff; simu_counter_left = counter_left_new; counter_right_diff = counter_right_new - simu_counter_right; counter_right_raw += counter_right_diff; uint16_t right_new = fixed_mul_f824 (counter_right_raw, counter_right_correction); counter_right_diff = (int16_t) (right_new - counter_right); counter_right = right_new; simu_counter_right = counter_right_new; /* Update auxiliary counter. */ for (i = 0; i < AC_ASSERV_AUX_NB; i++) { if (simu_robot->aux_motor[i]) { uint32_t counter_aux_new = simu_aux_model[i].th / (2*M_PI) * simu_robot->aux_encoder_steps[i]; counter_aux_diff[i] = counter_aux_new - simu_counter_aux[i]; counter_aux[i] += counter_aux_diff[i]; simu_counter_aux[i] = counter_aux_new; } else { counter_aux_diff[i] = 0; counter_aux[i] = 0; simu_counter_aux[i] = 0; } } /* Update position. */ simu_pos_update ((simu_left_model.th - old_left_th) / simu_left_model.m.i_G * simu_robot->wheel_r * 1000, (simu_right_model.th - old_right_th) / simu_right_model.m.i_G * simu_robot->wheel_r * 1000, simu_robot->footing * 1000); /* Update sensors. */ if (simu_robot->sensor_update) simu_robot->sensor_update (); } /** Send information to the other nodes. */ static void simu_send (void) { int i; mex_msg_t *m; /* Send position. */ m = mex_msg_new (0xa0); mex_msg_push (m, "hhl", (int16_t) simu_pos_x, (int16_t) simu_pos_y, (int32_t) (1024.0 * simu_pos_a)); mex_node_send (m); /* Send PWM. */ m = mex_msg_new (0xa1); mex_msg_push (m, "hh", pwm_left.cur, pwm_right.cur); for (i = 0; i < AC_ASSERV_AUX_NB; i++) mex_msg_push (m, "h", pwm_aux[i].cur); mex_node_send (m); /* Send Aux position. */ m = mex_msg_new (0xa8); for (i = 0; i < AC_ASSERV_AUX_NB; i++) { if (simu_robot->aux_motor[i]) mex_msg_push (m, "l", (int32_t) (1024.0 * simu_aux_model[i].th / simu_aux_model[i].m.i_G)); else mex_msg_push (m, "l", 0); } mex_node_send (m); } /** Initialise the timer. */ void timer_init (void) { simu_init (); } /** Wait for timer overflow. */ void timer_wait (void) { if (simu_mex) mex_node_wait_date (mex_node_date () + 4); simu_step (); if (simu_mex) simu_send (); } /** Read timer value. Used for performance analysis. */ uint8_t timer_read (void) { return 0; } /** Initialize the counters. */ void counter_init (void) { } /** Update overall counter values and compute diffs. */ void counter_update (void) { } /** Initialise PWM generator. */ void pwm_init (void) { } /** Update the hardware PWM values. */ void pwm_update (void) { } void eeprom_read_params (void) { } void eeprom_write_params (void) { } void eeprom_clear_params (void) { } void pwm_set_reverse (uint8_t reverse) { pwm_reverse = reverse; }